Geometry of the theory space in the exact renormalization group formalism

被引:7
作者
Pagani, C. [1 ]
Sonoda, H. [2 ]
机构
[1] Johannes Gutenberg Univ Mainz, Inst Phys WA THEP, Staudingerweg 7, D-55099 Mainz, Germany
[2] Kobe Univ, Phys Dept, Kobe, Hyogo 6578501, Japan
关键词
FIELD THEORIES; DIMENSIONS; EQUATION;
D O I
10.1103/PhysRevD.97.025015
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We consider the theory space as a manifold whose coordinates are given by the couplings appearing in the Wilson action. We discuss how to introduce connections on this theory space. A particularly intriguing connection can be defined directly from the solution of the exact renormalization group (ERG) equation. We advocate a geometric viewpoint that lets us define straightforwardly physically relevant quantities invariant under the changes of a renormalization scheme.
引用
收藏
页数:11
相关论文
共 23 条
[1]  
Cardy J., 1996, CAMBRIDGE LECT NOTES
[2]  
Codello A., ARXIV170505558
[3]   Scheme dependence and universality in the functional renormalization group [J].
Codello, Alessandro ;
Demmel, Maximilian ;
Zanusso, Omar .
PHYSICAL REVIEW D, 2014, 90 (02)
[4]   COVARIANT DERIVATIVES AND THE RENORMALIZATION-GROUP EQUATION [J].
DOLAN, BP .
INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 1995, 10 (17) :2439-2465
[5]   FLOW EQUATIONS FOR N-POINT FUNCTIONS AND BOUND-STATES [J].
ELLWANGER, U .
ZEITSCHRIFT FUR PHYSIK C-PARTICLES AND FIELDS, 1994, 62 (03) :503-510
[6]   On the wave function renormalization for Wilson actions and their one particle irreducible actions [J].
Igarashi, Y. ;
Itoh, K. ;
Sonoda, H. .
PROGRESS OF THEORETICAL AND EXPERIMENTAL PHYSICS, 2016, 2016 (09)
[7]   GEOMETRY OF THE RENORMALIZATION-GROUP WITH AN APPLICATION IN 2 DIMENSIONS [J].
LASSIG, M .
NUCLEAR PHYSICS B, 1990, 334 (03) :652-668
[8]   Wilsonian renormalisation of CFT correlation functions: field theory [J].
Lizana, J. M. ;
Perez-Victoria, M. .
JOURNAL OF HIGH ENERGY PHYSICS, 2017, (06)
[9]   THE EXACT RENORMALIZATION-GROUP AND APPROXIMATE SOLUTIONS [J].
MORRIS, TR .
INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 1994, 9 (14) :2411-2449
[10]  
Pagani C., ARXIV170709138