Spatial-temporal models to monitor groundwater data

被引:0
|
作者
Fuchs, K [1 ]
Fank, J [1 ]
机构
[1] Joanneum Res, Inst Appl Stat, A-8010 Graz, Austria
关键词
D O I
暂无
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Spatial-temporal models are used (a) for the interpolation of hydrographs to locations without observations, and (b) for the definition of boundary values for a transient finite element groundwater flow model. If the first principal component-resulting from a principal component transformation performed on the data set-explains more than 95% of the whole variance, this can be used to analyse the spatial structure of the data set with respect to the temporal behaviour. Kriging can be used to estimate the spatial distribution and the error variance of the first principal component. Using the calculated kriging weights of unobserved grid points and the time series information from its explanatory observation wells, water table hydrographs can be estimated, using the error variance as an indicator of the estimation error. Using the proposed spatial-temporal models the definition of initial boundary values for transient finite element flow models is possible.
引用
收藏
页码:595 / 598
页数:4
相关论文
共 50 条
  • [31] Kronecker Covariance Sketching for Spatial-Temporal Data
    Chi, Yuejie
    2016 24TH EUROPEAN SIGNAL PROCESSING CONFERENCE (EUSIPCO), 2016, : 316 - 320
  • [32] A spatial data model for urban spatial-temporal accessibility analysis
    Yin, Zhangcai
    Jin, Zhanghaonan
    Ying, Shen
    Li, Sanjuan
    Liu, Qingquan
    JOURNAL OF GEOGRAPHICAL SYSTEMS, 2020, 22 (04) : 447 - 468
  • [33] ESTIMATING SPATIAL CORRELATIONS FROM SPATIAL-TEMPORAL METEOROLOGICAL DATA
    GUNST, RF
    JOURNAL OF CLIMATE, 1995, 8 (10) : 2454 - 2470
  • [35] Bayesian Recurrent Neural Network Models for Forecasting and Quantifying Uncertainty in Spatial-Temporal Data
    McDermott, Patrick L.
    Wikle, Christopher K.
    ENTROPY, 2019, 21 (02)
  • [36] Spatial-temporal Graph Transformer Network for Spatial-temporal Forecasting
    Dao, Minh-Son
    Zetsu, Koji
    Hoang, Duy-Tang
    Proceedings - 2024 IEEE International Conference on Big Data, BigData 2024, 2024, : 1276 - 1281
  • [37] Discussion of paper: "Spatial-temporal models for skewed processes"
    Huerta, Gabriel
    Stroud, Jonathan
    ENVIRONMETRICS, 2017, 28 (06)
  • [38] Applying an artificial intelligence model using multidimensional spatial-temporal data to predict arsenic contamination of groundwater
    Chen, Kun-Huang
    Chen, Ssu-Han
    PROCESS SAFETY AND ENVIRONMENTAL PROTECTION, 2022, 163 : 362 - 367
  • [39] Spatial-Temporal Data Science of COVID-19 Data
    Deng, Deyu
    Leung, Carson K.
    Zhao, Chenru
    Wen, Yan
    Zheng, Hao
    2021 IEEE 15TH INTERNATIONAL CONFERENCE ON BIG DATA SCIENCE AND ENGINEERING (BIGDATASE 2021), 2021, : 7 - 14
  • [40] Spatial-temporal variation of groundwater and land subsidence evolution in Beijing area
    Lei, K.
    Luo, Y.
    Chen, B.
    Guo, M.
    Guo, G.
    Yang, Y.
    Wang, R.
    Prevention and Mitigation of Natural and Anthropogenic Hazards due to Land Subsidence, 2015, 372 : 7 - 11