Spatial-temporal models to monitor groundwater data

被引:0
|
作者
Fuchs, K [1 ]
Fank, J [1 ]
机构
[1] Joanneum Res, Inst Appl Stat, A-8010 Graz, Austria
关键词
D O I
暂无
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Spatial-temporal models are used (a) for the interpolation of hydrographs to locations without observations, and (b) for the definition of boundary values for a transient finite element groundwater flow model. If the first principal component-resulting from a principal component transformation performed on the data set-explains more than 95% of the whole variance, this can be used to analyse the spatial structure of the data set with respect to the temporal behaviour. Kriging can be used to estimate the spatial distribution and the error variance of the first principal component. Using the calculated kriging weights of unobserved grid points and the time series information from its explanatory observation wells, water table hydrographs can be estimated, using the error variance as an indicator of the estimation error. Using the proposed spatial-temporal models the definition of initial boundary values for transient finite element flow models is possible.
引用
收藏
页码:595 / 598
页数:4
相关论文
共 50 条
  • [1] Spatial-temporal models to monitor groundwater data
    Fuchs, Klemens
    Fank, Johann
    IAHS-AISH Publication, 1998, (250): : 595 - 598
  • [2] Spatial-temporal graph neural networks for groundwater data
    Taccari, Maria Luisa
    Wang, He
    Nuttall, Jonathan
    Chen, Xiaohui
    Jimack, Peter K.
    SCIENTIFIC REPORTS, 2024, 14 (01):
  • [3] Spatial-temporal Data Interpolation Based on Spatial-temporal Kriging Method
    Xu M.-L.
    Xing T.
    Han M.
    Zidonghua Xuebao/Acta Automatica Sinica, 2020, 46 (08): : 1681 - 1688
  • [4] Fill-in the Gaps: Spatial-Temporal Models for Missing Data
    Xue, Ji
    Nie, Bin
    Smirni, Evgenia
    2017 13TH INTERNATIONAL CONFERENCE ON NETWORK AND SERVICE MANAGEMENT (CNSM), 2017,
  • [5] Spatial-temporal difference equations and their application in spatial-temporal data model especially for big data
    Zhu, Dingju
    JOURNAL OF DIFFERENCE EQUATIONS AND APPLICATIONS, 2017, 23 (1-2) : 66 - 87
  • [6] Density estimation for spatial-temporal models
    Liliana Forzani
    Ricardo Fraiman
    Pamela Llop
    TEST, 2013, 22 : 321 - 342
  • [7] Density estimation for spatial-temporal models
    Forzani, Liliana
    Fraiman, Ricardo
    Llop, Pamela
    TEST, 2013, 22 (02) : 321 - 342
  • [8] Spatial-Temporal Prediction Models for Active Ticket Managing in Data Centers
    Xue, Ji
    Birke, Robert
    Chen, Lydia Y.
    Smirni, Evgenia
    IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, 2018, 15 (01): : 39 - 52
  • [9] Spatial-temporal analysis of hydrophysical data by using multiple linear models
    Rukseniene, Viktorija
    Ducinskas, Kestutis
    Dailidiene, Inga
    2014 IEEE/OES BALTIC INTERNATIONAL SYMPOSIUM (BALTIC), 2014,
  • [10] Cloud parallel spatial-temporal data model with intelligent parameter adaptation for spatial-temporal big data
    Zhu, Dingju
    CONCURRENCY AND COMPUTATION-PRACTICE & EXPERIENCE, 2018, 30 (22):