A non-standard finite element method for dynamical behavior of cylindrical classical shell model

被引:3
作者
Hernandez, E. [1 ]
Spa, C. [1 ]
Surriba, S. [2 ]
机构
[1] Univ Tecn Federico Santa Maria, Dept Matemat, Valparaiso, Chile
[2] Ausenco, Las Condes, Chile
关键词
Locking free scheme; MITC4-p finite element; Shell Naghdi model; Vibration mode; FREE-VIBRATION ANALYSIS; MIXED INTERPOLATION; ASYMPTOTIC-BEHAVIOR; FOUNDATION; PLATES;
D O I
10.1007/s11012-017-0774-2
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
This paper deals with the approximation of the dynamical behaviors of a cylindrical shell, modeled by the classical Naghdi shell's mathematical model over a reference domain. We use a non-standard method so called MITC4-p finite element method, which comes from non standard mixed interpolated tensorial component (MITC) formulation for Reissner-Mindlin plates. The performance of this approach is assessed for both, the modal analysis of the free vibrations modes, and time-domain analysis of vibration responses. Some numerical experiments are presented to show the performance of the method, in particular, it is numerically observed that the method is completely locking free and independent of the thickness.
引用
收藏
页码:1037 / 1048
页数:12
相关论文
共 31 条
[1]   On the asymptotic behaviour of shells of revolution in free vibration [J].
Artioli, Edoardo ;
Beirao da Veiga, Lourenco ;
Hakula, Harri ;
Lovadina, Carlo .
COMPUTATIONAL MECHANICS, 2009, 44 (01) :45-60
[2]  
Bathe K.J., 1985, The Mathematics of Finite Elements and Applications V, P491
[3]   An evaluation of the MITC shell elements [J].
Bathe, KJ ;
Iosilevich, A ;
Chapelle, D .
COMPUTERS & STRUCTURES, 2000, 75 (01) :1-30
[4]   A 4-NODE PLATE BENDING ELEMENT BASED ON MINDLIN REISSNER PLATE-THEORY AND A MIXED INTERPOLATION [J].
BATHE, KJ ;
DVORKIN, EN .
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 1985, 21 (02) :367-383
[5]   A FORMULATION OF GENERAL SHELL ELEMENTS - THE USE OF MIXED INTERPOLATION OF TENSORIAL COMPONENTS [J].
BATHE, KJ ;
DVORKIN, EN .
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 1986, 22 (03) :697-722
[6]  
Bathe KJ, 1996, PRENTICE HALL INT SE
[7]   HIGHER-ORDER MITC GENERAL SHELL ELEMENTS [J].
BUCALEM, ML ;
BATHE, KJ .
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 1993, 36 (21) :3729-3754
[8]   Strong Convergence Results for the Asymptotic Behavior of the 3D-Shell Model [J].
Chapelle, D. ;
Collin, A. .
JOURNAL OF ELASTICITY, 2014, 115 (02) :173-192
[9]   Fundamental considerations for the finite element analysis of shell structures [J].
Chapelle, D ;
Bathe, KJ .
COMPUTERS & STRUCTURES, 1998, 66 (01) :19-36
[10]  
Chapelle D, 2001, ACT NUMERIC, V10, P215, DOI 10.1017/S0962492901000034