Mesoporous carbon supported nanoparticulated PdNi2: A methanol tolerant oxygen reduction electrocatalyst

被引:46
作者
Ramos-Sanchez, Guadalupe [1 ]
Bruno, Mariano M. [2 ,3 ]
Thomas, Yohann R. J. [2 ]
Corti, Horacio R. [2 ]
Solorza-Feria, Omar [1 ]
机构
[1] IPN, Ctr Invest & Estudios Avanzados, Dept Quim, Mexico City 07360, DF, Mexico
[2] Comis Nacl Energia Atom, Dept Fis Mat Condensada, RA-1429 Buenos Aires, DF, Argentina
[3] Univ Gral San Martin, Escuela Ciencia & Tecnol, Buenos Aires, DF, Argentina
关键词
Carbon; Mesoporous; Support; PdNi2; Nanocatalyst; Oxygen reduction reaction; FUEL-CELL; PD ELECTROCATALYST; POROUS CARBON; CATALYST; CO; PERFORMANCE; ALLOYS; ELECTROOXIDATION; OXIDATION; ELECTRODE;
D O I
10.1016/j.ijhydene.2011.08.113
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The kinetics of the oxygen reduction reaction (ORR) of PdNi2 nanoparticles supported on a high specific area mesoporous carbon (MC) and Vulcan carbon was studied in the presence and absence of methanol in acid media. The electrocatalysts, synthesized by chemical reduction of the metal chlorides with NaBH4 in aqueous media were characterized by X-ray diffraction (XRD) and transmission electron microscopy (TEM). The catalyst supported on MC has a higher degree of Ni alloying and a smaller particle size than that supported on Vulcan. The electrochemical characterizations by RDE and DEMS indicate that PdNi2 supported on the high surface area MC exhibits higher catalytic activity for the ORR, very similar to that of Pd- and Pt-based alloys with the advantage of a very low noble metal loading. Moreover, the PdNi2 supported on MC shows an excellent methanol tolerance in acid media. Thus, this novel combination catalyst/support would be a suitable cathodic catalyst for direct methanol fuel cells. Copyright (C) 2011, Hydrogen Energy Publications, LLC. Published by Elsevier Ltd. All rights reserved.
引用
收藏
页码:31 / 40
页数:10
相关论文
共 63 条
  • [1] Performance of a direct ethylene glycol fuel cell with an anion-exchange membrane
    An, L.
    Zhao, T. S.
    Shen, S. Y.
    Wu, Q. X.
    Chen, R.
    [J]. INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2010, 35 (09) : 4329 - 4335
  • [2] Anderson ML, 2002, NANO LETT, V2, P235, DOI 10.1021/n1015707d
  • [3] Palladium in fuel cell catalysis
    Antolini, Ermete
    [J]. ENERGY & ENVIRONMENTAL SCIENCE, 2009, 2 (09) : 915 - 931
  • [4] Aricò AS, 2001, FUEL CELLS, V1, P133
  • [5] Formation, structure, and magnetic changes at annealing of films deposited by laser sputtering of Ni and Pd
    Bagmut, A. G.
    Shipkova, I. G.
    Zhuchkov, V. A.
    [J]. JOURNAL OF SURFACE INVESTIGATION-X-RAY SYNCHROTRON AND NEUTRON TECHNIQUES, 2011, 5 (03) : 460 - 464
  • [6] Bard A.J., 2001, ELECTROCHEMICAL METH, V2nd, P341
  • [7] Graphite nanofibers as an electrode for fuel cell applications
    Bessel, CA
    Laubernds, K
    Rodriguez, NM
    Baker, RTK
    [J]. JOURNAL OF PHYSICAL CHEMISTRY B, 2001, 105 (06): : 1115 - 1118
  • [8] Efficient fuel cell catalysts emerging from organometallic chemistry
    Boennemann, Helmut
    Khelashvili, Guram
    [J]. APPLIED ORGANOMETALLIC CHEMISTRY, 2010, 24 (04) : 257 - 268
  • [9] Characterization of monolithic porous carbon prepared from resorcinol/formaldehyde gels with cationic surfactant
    Bruno, M. M.
    Cotella, N. G.
    Miras, M. C.
    Koch, T.
    Seidler, S.
    Barbero, C.
    [J]. COLLOIDS AND SURFACES A-PHYSICOCHEMICAL AND ENGINEERING ASPECTS, 2010, 358 (1-3) : 13 - 20
  • [10] Synthetic Porous Carbon as Support of Platinum Nanoparticles for Fuel Cell Electrodes
    Bruno, Mariano M.
    Planes, Gabriel A.
    Miras, Maria C.
    Barbero, Cesar A.
    Pastor Tejera, Elenao
    Rodriguez, Jose L.
    [J]. MOLECULAR CRYSTALS AND LIQUID CRYSTALS, 2010, 521 : 229 - 236