Parameter estimation using chaotic time series

被引:22
|
作者
Annan, JD
机构
[1] Japan Agcy Marine Earth Sci & Technol, Frontier Res Ctr Global Change, Kanazawa Ku, Kanagawa 2360001, Japan
[2] Proudman Oceanog Lab, Liverpool L3 5DA, Merseyside, England
关键词
D O I
10.1111/j.1600-0870.2005.00143.x
中图分类号
P4 [大气科学(气象学)];
学科分类号
0706 ; 070601 ;
摘要
We show how the response of a chaotic model to temporally varying external forcing can be efficiently tuned via parameter estimation using time series data, extending previous work in which an unforced climatologically steady state was used as the tuning target. Although directly fitting a long trajectory of a chaotic deterministic model to a time series of data is generally not possible even in principle, this is not actually necessary for useful prediction on climatological time-scales. If the model and data outputs are averaged over suitable time-scales, the effect of chaotic variability is effectively converted into nothing more troublesome than some statistical noise. We show how tuning of models to unsteady time series data can be efficiently achieved with an augmented ensemble Kalman filter, and we demonstrate the procedure with application to a forced version of the Lorenz model. The computational cost is of the order of 100 model integrations, and so the method should be directly applicable to more sophisticated climate models of at least moderate resolution.
引用
收藏
页码:709 / 714
页数:6
相关论文
共 50 条
  • [21] Noise level estimation of chaotic hydrological time series
    Jayawardena, AW
    Xu, PC
    Sivakumar, B
    FRIEND 2002-REGIONAL HYDROLOGY: BRIDGING THE GAP BETWEEN RESEARCH AND PRACTICE, 2002, (274): : 297 - 304
  • [22] Parameter Estimation of Chaotic Dynamical Systems Using HEQPSO
    Ko, Chia-Nan
    Jau, You-Min
    Jeng, Jin-Tsong
    JOURNAL OF INFORMATION SCIENCE AND ENGINEERING, 2015, 31 (02) : 675 - 689
  • [23] Parameter estimation in chaotic interference
    Wang, FP
    Guo, JB
    Wang, ZJ
    2000 5TH INTERNATIONAL CONFERENCE ON SIGNAL PROCESSING PROCEEDINGS, VOLS I-III, 2000, : 258 - 264
  • [24] Parameter estimation in chaotic noise
    Leung, H
    Huang, XP
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 1996, 44 (10) : 2456 - 2463
  • [25] Chaotic Time Series Prediction Using ELANFIS
    Biju, G. M.
    Shihabudheen, K., V
    Pillai, G. N.
    2017 6TH INTERNATIONAL CONFERENCE ON COMPUTER APPLICATIONS IN ELECTRICAL ENGINEERING - RECENT ADVANCES (CERA), 2017, : 473 - 478
  • [26] LSHADE with Semi-Parameter Adaptation for Chaotic Time Series Prediction
    Ni, Tian
    Wang, Lei
    Jiang, Qiaoyong
    Zhao, Jinwei
    Zhao, Zhiqiang
    PROCEEDINGS OF 2018 TENTH INTERNATIONAL CONFERENCE ON ADVANCED COMPUTATIONAL INTELLIGENCE (ICACI), 2018, : 747 - 751
  • [27] Modified correlation entropy estimation for a noisy chaotic time series
    Jayawardena, A. W.
    Xu, Pengcheng
    Li, W. K.
    CHAOS, 2010, 20 (02)
  • [28] Estimation of Lyapunov spectrum and model selection for a chaotic time series
    Li, Qinglan
    Xu, Pengcheng
    APPLIED MATHEMATICAL MODELLING, 2012, 36 (12) : 6090 - 6099
  • [29] Parameter estimation using an orthogonal series expansion
    Rico, J
    Heydt, GT
    ELECTRIC MACHINES AND POWER SYSTEMS, 2000, 28 (08): : 761 - 777
  • [30] Consistent estimation of the memory parameter for nonlinear time series
    Dalla, V
    Giraitis, L
    Hidalgo, J
    JOURNAL OF TIME SERIES ANALYSIS, 2006, 27 (02) : 211 - 251