Tools and methods for Edge-AI-systems

被引:0
|
作者
Schwabe, Nils [1 ]
Zhou, Yexu [2 ]
Hielscher, Leon [1 ]
Roeddiger, Tobias [2 ]
Riedel, Till [2 ]
Reiter, Sebastian [1 ]
机构
[1] FZI Res Ctr Informat Technol, Karlsruhe, Germany
[2] Karlsruher Inst Technol KIT, Inst Telemat, Karlsruhe, Germany
关键词
Edge-AI; machine learning; hardware acceleration; co-design; auto-ml;
D O I
10.1515/auto-2022-0023
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The enormous potential of artificial intelligence, especially artificial neural networks, when used for edge computing applications in cars, traffic lights or smart watches, has not yet been fully exploited today. The reasons for this are the computing, energy and memory requirements of modern neural networks, which typically cannot be met by embedded devices. This article provides a detailed summary of today's challenges and gives a deeper insight into existing solutions that enable neural network performance with modern HW/SW co-design techniques.
引用
收藏
页码:767 / 776
页数:10
相关论文
共 50 条
  • [21] Classifying the Devil in the Dust: Edge AI
    Riley, Jared
    Williams, Shannon
    Reyna, Corey
    Adams, Ethan
    Depoian, Arthur C., II
    Bailey, Colleen P.
    Guturu, Parthasarathy
    2022 IEEE METROCON, 2022, : 4 - 6
  • [22] Roadmap for Edge AI: A Dagstuhl Perspective
    Ding, Aaron Yi
    Peltonen, Ella
    Meuser, Tobias
    Aral, Atakan
    Becker, Christian
    Dustdar, Schahram
    Hiessl, Thomas
    Kranzlmueller, Dieter
    Liyanage, Madhusanka
    Maghsudi, Setareh
    Mohan, Nitinder
    Ott, Joerg
    Rellermeyer, Jan S.
    Schulte, Stefan
    Schulzrinne, Henning
    Solmaz, Guerkan
    Tarkoma, Sasu
    Varghese, Blesson
    Wolf, Lars
    ACM SIGCOMM COMPUTER COMMUNICATION REVIEW, 2022, 52 (01) : 28 - 33
  • [23] Revisiting Edge AI: Opportunities and Challenges
    Meuser, Tobias
    Loven, Lauri
    Bhuyan, Monowar
    Patil, Shishir G.
    Dustdar, Schahram
    Aral, Atakan
    Bayhan, Suzan
    Becker, Christian
    de Lara, Eyal
    Ding, Aaron Yi
    Edinger, Janick
    Gross, James
    Mohan, Nitinder
    Pimentel, Andy D.
    Riviere, Etienne
    Schulzrinne, Henning
    Simoens, Pieter
    Solmaz, Guerkan
    Welzl, Michael
    IEEE INTERNET COMPUTING, 2024, 28 (04) : 49 - 59
  • [24] Roadmap for edge AI: A Dagstuhl Perspective
    Ding A.Y.
    Peltonen E.
    Meuser T.
    Aral A.
    Becker C.
    Dustdar S.
    Hiessl T.
    Kranzlmüller D.
    Liyanage M.
    Maghsudi S.
    Mohan N.
    Ott J.
    Rellermeyer J.S.
    Schulte S.
    Schulzrinne H.
    Solmaz G.
    Tarkoma S.
    Varghese B.
    Wolf L.
    Computer Communication Review, 2022, 52 (01): : 28 - 33
  • [25] A study on a low power optimization algorithm for an edge-AI device
    Kaneko, Tatsuya
    Orimo, Kentaro
    Hida, Itaru
    Takamaeda-Yamazaki, Shinya
    Ikebe, Masayuki
    Motomura, Masato
    Asai, Tetsuya
    IEICE NONLINEAR THEORY AND ITS APPLICATIONS, 2019, 10 (04): : 373 - 389
  • [26] EdgeAISim: A toolkit for simulation and modelling of AI models in edge computing environments
    Nandhakumar A.R.
    Baranwal A.
    Choudhary P.
    Golec M.
    Gill S.S.
    Measurement: Sensors, 2024, 31
  • [27] Edge AI-based early anomaly detection of LNG Carrier Main Engine systems
    Kim, Donghyun
    Kim, Taigon
    An, Minji
    Cho, Yonghun
    Baek, Yunju
    OCEANS 2023 - LIMERICK, 2023,
  • [28] AI-Based Affective Music Generation Systems: A Review of Methods and Challenges
    Dash, Adyasha
    Agres, Kathleen
    ACM COMPUTING SURVEYS, 2024, 56 (11)
  • [29] Comparative Performance Analysis of Edge-AI Devices in Deep Learning Applications
    Samsuri, Muhammad Hafiz
    Yuen, Shang Li
    Lau, Phooi Yee
    Wong, Chin Wee
    Kamarudin, Nur Afiqah
    Hussin, Zarina
    Talib, Muhammad Syukri Mohd
    Hon, Hock Woon
    2024 IEEE 19TH CONFERENCE ON INDUSTRIAL ELECTRONICS AND APPLICATIONS, ICIEA 2024, 2024,
  • [30] An Interpretive Perspective: Adversarial Trojaning Attack on Neural-Architecture-Search Enabled Edge AI Systems
    Xu, Ship Peng
    Wang, Ke
    Hassan, Md Rafiul
    Hassan, Mohammad Mehedi
    Chen, Chien-Ming
    IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, 2023, 19 (01) : 503 - 510