Tools and methods for Edge-AI-systems

被引:0
|
作者
Schwabe, Nils [1 ]
Zhou, Yexu [2 ]
Hielscher, Leon [1 ]
Roeddiger, Tobias [2 ]
Riedel, Till [2 ]
Reiter, Sebastian [1 ]
机构
[1] FZI Res Ctr Informat Technol, Karlsruhe, Germany
[2] Karlsruher Inst Technol KIT, Inst Telemat, Karlsruhe, Germany
关键词
Edge-AI; machine learning; hardware acceleration; co-design; auto-ml;
D O I
10.1515/auto-2022-0023
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The enormous potential of artificial intelligence, especially artificial neural networks, when used for edge computing applications in cars, traffic lights or smart watches, has not yet been fully exploited today. The reasons for this are the computing, energy and memory requirements of modern neural networks, which typically cannot be met by embedded devices. This article provides a detailed summary of today's challenges and gives a deeper insight into existing solutions that enable neural network performance with modern HW/SW co-design techniques.
引用
收藏
页码:767 / 776
页数:10
相关论文
共 50 条
  • [1] Explainable AI for Bioinformatics: Methods, Tools and Applications
    Karim, Md Rezaul
    Islam, Tanhim
    Shajalal, Md
    Beyan, Oya
    Lange, Christoph
    Cochez, Michael
    Rebholz-Schuhmann, Dietrich
    Decker, Stefan
    BRIEFINGS IN BIOINFORMATICS, 2023, 24 (05)
  • [2] Edge AI: A survey
    Singh R.
    Gill S.S.
    Internet of Things and Cyber-Physical Systems, 2023, 3 : 71 - 92
  • [3] Risk Assessment Tools on Trial: AI Systems Go?
    Chugh, Neha
    IEEE TECHNOLOGY AND SOCIETY MAGAZINE, 2022, 41 (03) : 50 - 57
  • [4] InTec: integrated things-edge computing: a framework for distributing machine learning pipelines in edge AI systems
    Larian, Habib
    Safi-Esfahani, Faramarz
    COMPUTING, 2025, 107 (01)
  • [5] Communication-Efficient Edge AI: Algorithms and Systems
    Shi, Yuanming
    Yang, Kai
    Jiang, Tao
    Zhang, Jun
    Letaief, Khaled B.
    IEEE COMMUNICATIONS SURVEYS AND TUTORIALS, 2020, 22 (04): : 2167 - 2191
  • [6] Applying the ethics of AI: a systematic review of tools for developing and assessing AI-based systems
    Ortega-Bolanos, Ricardo
    Bernal-Salcedo, Joshua
    Ortiz, Mariana German
    Sarmiento, Julian Galeano
    Ruz, Gonzalo A.
    Tabares-Soto, Reinel
    ARTIFICIAL INTELLIGENCE REVIEW, 2024, 57 (05)
  • [7] Enabling Design Methodologies and Future Trends for Edge AI: Specialization and Codesign
    Hao, Cong
    Dotzel, Jordan
    Xiong, Jinjun
    Benini, Luca
    Zhang, Zhiru
    Chen, Deming
    IEEE DESIGN & TEST, 2021, 38 (04) : 7 - 26
  • [8] Seamless HW-accelerated AI serving in heterogeneous MEC Systems with AI@EDGE
    Tzenetopoulos, Achilleas
    Lentaris, George
    Leftheriotis, Aimilios
    Chrysomeris, Panos
    Palomares, Javier
    Coronado, Estefania
    Kazhamiakin, Raman
    Soudris, Dimitrios
    PROCEEDINGS OF THE 33RD INTERNATIONAL SYMPOSIUM ON HIGH-PERFORMANCE PARALLEL AND DISTRIBUTED COMPUTING, HPDC 2024, 2024,
  • [9] Systematic literature review of validation methods for AI systems
    Myllyaho, Lalli
    Raatikainen, Mikko
    Mannisto, Tomi
    Mikkonen, Tommi
    Nurminen, Jukka K.
    JOURNAL OF SYSTEMS AND SOFTWARE, 2021, 181
  • [10] Real-Time Apple Detection System Using Embedded Systems With Hardware Accelerators: An Edge AI Application
    Mazzia, Vittorio
    Khaliq, Aleem
    Salvetti, Francesco
    Chiaberge, Marcello
    IEEE ACCESS, 2020, 8 : 9102 - 9114