Internal model control using neural networks

被引:0
作者
Faouzi, B [1 ]
Abderrazak, C [1 ]
Tarek, G [1 ]
机构
[1] Univ 7 Novembre Carthage, Inst Natl Sci Appl & Technol, Tunis, Tunisia
来源
2004 IEEE International Conference on Industrial Technology (ICIT), Vols. 1- 3 | 2004年
关键词
internal model control; neural networks; PI controller; level control; laboratory process;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper deals with the internal model control of non linear dynamic systems based on Artificial Neural Networks. The proposed control scheme is based on the neural network model and the inverse model of the process. These models are determined off line using input output data. The back propagation algorithm is used to train the neural networks. The neural network internal model control is applied to a level control of a laboratory process. The performances of the proposed controller are compared to a standard PI controller. The combination of the PI controller and an anticipation action given by the inverse model of the process has been also tested on the experimental process.
引用
收藏
页码:1121 / 1126
页数:6
相关论文
共 11 条
[1]  
BORNE P., 1993, ANAL REGULATION PROC, V2
[2]   ADAPTIVE-CONTROL OF DISCRETE-SYSTEMS USING NEURAL NETWORKS [J].
ETXEBARRIA, V .
IEE PROCEEDINGS-CONTROL THEORY AND APPLICATIONS, 1994, 141 (04) :209-215
[3]  
Fukuda T., 1993, IEEE T IND ELECT
[4]  
HARNANDEZ E, 1993, AICHE J, V39, P446
[5]   NEURAL NETWORKS FOR CONTROL-SYSTEMS - A SURVEY [J].
HUNT, KJ ;
SBARBARO, D ;
ZBIKOWSKI, R ;
GAWTHROP, PJ .
AUTOMATICA, 1992, 28 (06) :1083-1112
[6]  
KOIVISTO H, 1993, 12 IFAC ORLD C SYDN, P4
[7]   Nonlinear model predictive control of a simulated multivariable polymerization reactor using second-order Volterra models [J].
Maner, BR ;
Doyle, FJ ;
Ogunnaike, BA ;
Pearson, RK .
AUTOMATICA, 1996, 32 (09) :1285-1301
[8]   Constrained long-range predictive control based on artificial neural networks [J].
Najim, K ;
Rusnak, A ;
Meszaros, A ;
Fikar, M .
INTERNATIONAL JOURNAL OF SYSTEMS SCIENCE, 1997, 28 (12) :1211-1226
[9]  
Narendra K S, 1990, IEEE Trans Neural Netw, V1, P4, DOI 10.1109/72.80202
[10]  
Yabuta T., 1990, IEEE INT C ROB AUT, V3, P38