Improving homology estimates with random walks

被引:8
作者
Bendich, Paul [1 ]
Galkovskyi, Taras [1 ]
Harer, John [2 ,3 ]
机构
[1] Duke Univ, Dept Math, Durham, NC 27708 USA
[2] Duke Univ, Ctr Syst Biol, Dept Math, Durham, NC 27708 USA
[3] Duke Univ, Ctr Syst Biol, Dept Comp Sci, Durham, NC 27708 USA
基金
美国国家科学基金会;
关键词
GEOMETRIC DIFFUSIONS; STRUCTURE DEFINITION; HARMONIC-ANALYSIS; PERSISTENCE; TOOL;
D O I
10.1088/0266-5611/27/12/124002
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This experimental paper makes the case for a new approach to the use of persistent homology in the study of shape and feature in datasets. By introducing ideas from diffusion geometry and random walks, we discover that homological features can be enhanced and more effectively extracted from spaces that are sampled densely and evenly, and with a small amount of noise. This study paves the way for a more theoretical analysis of how random walk metrics affect persistence diagrams, and provides evidence that combining topological data analysis with techniques inspired by diffusion geometry holds great promise for new analyses of a wide variety of datasets.
引用
收藏
页数:14
相关论文
共 17 条
  • [1] [Anonymous], 2010, Computational topology: An introduction
  • [2] Bendich P, 2011, EXPT RESULTS DIFFUSI
  • [3] Inferring local homology from sampled stratified spaces
    Bendich, Paul
    Cohen-Steiner, David
    Edelsbrunner, Herbert
    Harer, John
    Morozov, Dmitriy
    [J]. 48TH ANNUAL IEEE SYMPOSIUM ON FOUNDATIONS OF COMPUTER SCIENCE, PROCEEDINGS, 2007, : 536 - 546
  • [4] FINDING ALL CLIQUES OF AN UNDIRECTED GRAPH [H]
    BRON, C
    KERBOSCH, J
    [J]. COMMUNICATIONS OF THE ACM, 1973, 16 (09) : 575 - 577
  • [5] Carlsson G, 2011, TOPOLOGICAL AN UNPUB
  • [6] Chazal F., 2010, 6930 INRIA
  • [7] Proximity of Persistence Modules and their Diagrams
    Chazal, Frederic
    Cohen-Steiner, David
    Glisse, Marc
    Guibas, Leonidas J.
    Oudot, Steve Y.
    [J]. PROCEEDINGS OF THE TWENTY-FIFTH ANNUAL SYMPOSIUM ON COMPUTATIONAL GEOMETRY (SCG'09), 2009, : 237 - 246
  • [8] Stability of persistence diagrams
    Cohen-Steiner, David
    Edelsbrunner, Herbert
    Harer, John
    [J]. DISCRETE & COMPUTATIONAL GEOMETRY, 2007, 37 (01) : 103 - 120
  • [9] Diffusion maps
    Coifman, Ronald R.
    Lafon, Stephane
    [J]. APPLIED AND COMPUTATIONAL HARMONIC ANALYSIS, 2006, 21 (01) : 5 - 30
  • [10] Geometric diffusions as a tool for harmonic analysis and structure definition of data: Diffusion maps
    Coifman, RR
    Lafon, S
    Lee, AB
    Maggioni, M
    Nadler, B
    Warner, F
    Zucker, SW
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2005, 102 (21) : 7426 - 7431