Asymptotic stability of (q, h)-fractional difference equations

被引:7
作者
Wang, Mei [1 ]
Du, Feifei [1 ]
Chen, Churong [1 ]
Jia, Baoguo [1 ,2 ]
机构
[1] Sun Yat Sen Univ, Sch Math, Guangzhou 510275, Guangdong, Peoples R China
[2] Sun Yat Sen Univ, Guangdong Prov Key Lab Computat Sci, Guangzhou 510275, Guangdong, Peoples R China
基金
中国国家自然科学基金;
关键词
Nabla; (q; h)-fractional difference; Asymptotic stability; Liapunov functional; NABLA FRACTIONAL (Q; POSITIVE SOLUTIONS; SYSTEMS;
D O I
10.1016/j.amc.2018.12.039
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Asymptotic stability of linear nabla Riemann-Liouville (q, h)-fractional difference equation is investigated in this paper. A Liapunov functional is constructed for the fractional difference equation. The sufficient condition for the asymptotic stability of considered equations is proposed. The results are illustrated with the corresponding numerical examples. (C) 2018 Elsevier Inc. All rights reserved.
引用
收藏
页码:158 / 167
页数:10
相关论文
共 46 条
  • [1] [Anonymous], BOUND VALUE PROBL
  • [2] [Anonymous], ELECT J QUAL THEORY
  • [3] Aral A., 2013, Applications of q-Calculus in Operator Theory
  • [4] Gronwall's inequality on discrete fractional calculus
    Atici, Ferhan M.
    Eloe, Paul W.
    [J]. COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2012, 64 (10) : 3193 - 3200
  • [5] LINEAR SYSTEMS OF FRACTIONAL NABLA DIFFERENCE EQUATIONS
    Atici, Ferhan M.
    Eloe, Paul W.
    [J]. ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 2011, 41 (02) : 353 - 370
  • [6] The Asymptotic Behavior of Solutions for a Class of Nonlinear Fractional Difference Equations with Damping Term
    Bai, Zhihong
    Xu, Run
    [J]. DISCRETE DYNAMICS IN NATURE AND SOCIETY, 2018, 2018
  • [7] Stability analysis of Caputo-like discrete fractional systems
    Baleanu, Dumitru
    Wu, Guo-Cheng
    Bai, Yun-Ru
    Chen, Fu-Lai
    [J]. COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2017, 48 : 520 - 530
  • [8] Cermak J., 2011, ABSTR APPL ANAL, V2011, P21
  • [9] ON EXPLICIT STABILITY CONDITIONS FOR A LINEAR FRACTIONAL DIFFERENCE SYSTEM
    Cermak, Jan
    Gyori, Istvan
    Nechvatal, Ludek
    [J]. FRACTIONAL CALCULUS AND APPLIED ANALYSIS, 2015, 18 (03) : 651 - 672
  • [10] ON (q, h) - ANALOGUE OF FRACTIONAL CALCULUS
    Cermak, Jan
    Nechvatal, Ludek
    [J]. JOURNAL OF NONLINEAR MATHEMATICAL PHYSICS, 2010, 17 (01) : 51 - 68