Computation of Topological Entropy of Finite Representations of Maps

被引:0
作者
Galias, Zbigniew [1 ]
机构
[1] AGH Univ Sci & Technol, Dept Elect Engn, Al Mickiewicza 30, PL-30059 Krakow, Poland
来源
2018 25TH IEEE INTERNATIONAL CONFERENCE ON ELECTRONICS, CIRCUITS AND SYSTEMS (ICECS) | 2018年
关键词
topological entropy; Henon map;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Efficient methods to compute values of topological entropy of finite representations of maps are presented. Computational methods are illustrated using the Helton map as an example. Accurate finite representations of the Henon map are constructed and values of the topological entropy of these representations are calculated. Relations between the topological entropy of the Helton map and values of topological entropy of its finite representations are discussed.
引用
收藏
页码:533 / 536
页数:4
相关论文
共 13 条
[1]   TOPOLOGICAL ENTROPY [J].
ADLER, RL ;
KONHEIM, AG ;
MCANDREW, MH .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1965, 114 (02) :309-&
[2]  
Akgül A, 2013, 2013 8TH INTERNATIONAL CONFERENCE ON ELECTRICAL AND ELECTRONICS ENGINEERING (ELECO), P320
[3]  
[Anonymous], 2013, MATRIX COMPUTATIONS
[5]   An Integrated Dual Entropy Core True Random Number Generator [J].
Cicek, Ihsan ;
Pusane, Ali Emre ;
Dundar, Gunhan .
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS II-EXPRESS BRIEFS, 2017, 64 (03) :329-333
[6]  
Dinaburg E., 1971, IZV AKAD NAUK SSSR M, V35, P324
[7]   Is the Henon attractor chaotic? [J].
Galias, Zbigniew ;
Tucker, Warwick .
CHAOS, 2015, 25 (03)
[9]   Information-Theory-Based Complexity Quantifier for Chaotic Semiconductor Laser With Double Time Delays [J].
Guo, Xing Xing ;
Xiang, Shui Ying ;
Zhang, Ya Hui ;
Wen, Ai Jun ;
Hao, Yue .
IEEE JOURNAL OF QUANTUM ELECTRONICS, 2018, 54 (01)
[10]   2-DIMENSIONAL MAPPING WITH A STRANGE ATTRACTOR [J].
HENON, M .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1976, 50 (01) :69-77