Radiomics in hepatocellular carcinoma: A state-of-the-art review

被引:21
作者
Yao, Shan [1 ]
Ye, Zheng [1 ]
Wei, Yi [1 ]
Jiang, Han-Yu [1 ]
Song, Bin [1 ]
机构
[1] Sichuan Univ, West China Hosp, Dept Radiol, 37 Guoxue Alley, Chengdu 610041, Sichuan, Peoples R China
基金
中国国家自然科学基金;
关键词
Hepatocellular carcinoma; Radiomics; Deep learning; Artificial intelligence; Medical imaging; Predictive modeling; CONVOLUTIONAL NEURAL-NETWORK; CONTRAST-ENHANCED CT; MICROVASCULAR INVASION; SURGICAL RESECTION; PREOPERATIVE PREDICTION; RECURRENCE; SEGMENTATION; MANAGEMENT; DIAGNOSIS; NOMOGRAM;
D O I
10.4251/wjgo.v13.i11.1599
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
Hepatocellular carcinoma (HCC) is the most common cancer and the second major contributor to cancer-related mortality. Radiomics, a burgeoning technology that can provide invisible high-dimensional quantitative and mineable data derived from routine-acquired images, has enormous potential for HCC management from diagnosis to prognosis as well as providing contributions to the rapidly developing deep learning methodology. This article aims to review the radiomics approach and its current state-of-the-art clinical application scenario in HCC. The limitations, challenges, and thoughts on future directions are also summarized.
引用
收藏
页码:1599 / 1615
页数:17
相关论文
共 50 条
[31]   Radiomics in Lung Diseases Imaging: State-of-the-Art for Clinicians [J].
Frix, Anne-Noelle ;
Cousin, Francois ;
Refaee, Turkey ;
Bottari, Fabio ;
Vaidyanathan, Akshayaa ;
Desir, Colin ;
Vos, Wim ;
Walsh, Sean ;
Occhipinti, Mariaelena ;
Lovinfosse, Pierre ;
Leijenaar, Ralph T. H. ;
Hustinx, Roland ;
Meunier, Paul ;
Louis, Renaud ;
Lambin, Philippe ;
Guiot, Julien .
JOURNAL OF PERSONALIZED MEDICINE, 2021, 11 (07)
[32]   STATE-OF-THE-ART IN LIVER-TRANSPLANTATION FOR HEPATOCELLULAR-CARCINOMA [J].
KNOEFEL, WT ;
ROGIERS, X ;
MALAGO, M ;
STERNECK, M ;
GUNDLACH, M ;
HOSCH, SB ;
BROELSCH, CE .
ZENTRALBLATT FUR CHIRURGIE, 1994, 119 (11) :772-776
[33]   State of the art: hepatocellular carcinoma [J].
Bolondi, Luigi .
FUTURE ONCOLOGY, 2014, 10 (15) :1-6
[34]   Radiomics-based Machine Learning to Predict the Recurrence of Hepatocellular Carcinoma: A Systematic Review and Meta-analysis [J].
Jin, Jin ;
Jiang, Ying ;
Zhao, Yu -Lan ;
Huang, Pin -Tong .
ACADEMIC RADIOLOGY, 2024, 31 (02) :467-479
[35]   Radiomics in prostate cancer: basic concepts and current state-of-the-art [J].
Shan Yao ;
Hanyu Jiang ;
Bin Song .
Chinese Journal of Academic Radiology, 2020, 2 :47-55
[36]   A radiomics nomogram for predicting cytokeratin 19-positive hepatocellular carcinoma: a two-center study [J].
Zhang, Liqing ;
Zhou, Heshan ;
Zhang, Xiaoqian ;
Ding, Zhongxiang ;
Xu, Jianfeng .
FRONTIERS IN ONCOLOGY, 2023, 13
[37]   MRI-Based Radiomics and Deep Learning in Biological Characteristics and Prognosis of Hepatocellular Carcinoma: Opportunities and Challenges [J].
Xia, Tianyi ;
Zhao, Ben ;
Li, Binrong ;
Lei, Ying ;
Song, Yang ;
Wang, Yuancheng ;
Tang, Tianyu ;
Ju, Shenghong .
JOURNAL OF MAGNETIC RESONANCE IMAGING, 2023, :767-783
[38]   Deep Learning Techniques and Imaging in Otorhinolaryngology-A State-of-the-Art Review [J].
Tsilivigkos, Christos ;
Athanasopoulos, Michail ;
di Micco, Riccardo ;
Giotakis, Aris ;
Mastronikolis, Nicholas S. ;
Mulita, Francesk ;
Verras, Georgios-Ioannis ;
Maroulis, Ioannis ;
Giotakis, Evangelos .
JOURNAL OF CLINICAL MEDICINE, 2023, 12 (22)
[39]   Radiomics for the Preoperative Evaluation of Microvascular Invasion in Hepatocellular Carcinoma: A Meta-Analysis [J].
Li, Liujun ;
Wu, Chaoqun ;
Huang, Yongquan ;
Chen, Jiaxin ;
Ye, Dalin ;
Su, Zhongzhen .
FRONTIERS IN ONCOLOGY, 2022, 12
[40]   A radiomics nomogram for the prediction of overall survival in patients with hepatocellular carcinoma after hepatectomy [J].
Liu, Qinqin ;
Li, Jing ;
Liu, Fei ;
Yang, Weilin ;
Ding, Jingjing ;
Chen, Weixia ;
Wei, Yonggang ;
Li, Bo ;
Zheng, Lu .
CANCER IMAGING, 2020, 20 (01)