Radiomics in hepatocellular carcinoma: A state-of-the-art review

被引:21
作者
Yao, Shan [1 ]
Ye, Zheng [1 ]
Wei, Yi [1 ]
Jiang, Han-Yu [1 ]
Song, Bin [1 ]
机构
[1] Sichuan Univ, West China Hosp, Dept Radiol, 37 Guoxue Alley, Chengdu 610041, Sichuan, Peoples R China
基金
中国国家自然科学基金;
关键词
Hepatocellular carcinoma; Radiomics; Deep learning; Artificial intelligence; Medical imaging; Predictive modeling; CONVOLUTIONAL NEURAL-NETWORK; CONTRAST-ENHANCED CT; MICROVASCULAR INVASION; SURGICAL RESECTION; PREOPERATIVE PREDICTION; RECURRENCE; SEGMENTATION; MANAGEMENT; DIAGNOSIS; NOMOGRAM;
D O I
10.4251/wjgo.v13.i11.1599
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
Hepatocellular carcinoma (HCC) is the most common cancer and the second major contributor to cancer-related mortality. Radiomics, a burgeoning technology that can provide invisible high-dimensional quantitative and mineable data derived from routine-acquired images, has enormous potential for HCC management from diagnosis to prognosis as well as providing contributions to the rapidly developing deep learning methodology. This article aims to review the radiomics approach and its current state-of-the-art clinical application scenario in HCC. The limitations, challenges, and thoughts on future directions are also summarized.
引用
收藏
页码:1599 / 1615
页数:17
相关论文
共 105 条
[1]   Decoding tumour phenotype by noninvasive imaging using a quantitative radiomics approach [J].
Aerts, Hugo J. W. L. ;
Velazquez, Emmanuel Rios ;
Leijenaar, Ralph T. H. ;
Parmar, Chintan ;
Grossmann, Patrick ;
Cavalho, Sara ;
Bussink, Johan ;
Monshouwer, Rene ;
Haibe-Kains, Benjamin ;
Rietveld, Derek ;
Hoebers, Frank ;
Rietbergen, Michelle M. ;
Leemans, C. Rene ;
Dekker, Andre ;
Quackenbush, John ;
Gillies, Robert J. ;
Lambin, Philippe .
NATURE COMMUNICATIONS, 2014, 5
[2]  
Bakr S, 2017, J MED IMAGING, V4, DOI 10.1117/1.JMI.4.4.041303
[3]  
Bengio Y., 2007, P ADV NEUR INF PROC, P153
[4]   Radiogenomics: bridging imaging and genomics [J].
Bodalal, Zuhir ;
Trebeschi, Stefano ;
Nguyen-Kim, Thi Dan Linh ;
Schats, Winnie ;
Beets-Tan, Regina .
ABDOMINAL RADIOLOGY, 2019, 44 (06) :1960-1984
[5]   Automated detection and delineation of hepatocellular carcinoma on multiphasic contrast-enhanced MRI using deep learning [J].
Bousabarah, Khaled ;
Letzen, Brian ;
Tefera, Jonathan ;
Savic, Lynn ;
Schobert, Isabel ;
Schlachter, Todd ;
Staib, Lawrence H. ;
Kocher, Martin ;
Chapiro, Julius ;
Lin, MingDe .
ABDOMINAL RADIOLOGY, 2021, 46 (01) :216-225
[6]   Management of hepatoceullular carcinoma [J].
Bruix, J ;
Sherman, M .
HEPATOLOGY, 2005, 42 (05) :1208-1236
[7]   Evidence-Based Diagnosis, Staging, and Treatment of Patients With Hepatocellular Carcinoma [J].
Bruix, Jordi ;
Reig, Maria ;
Sherman, Morris .
GASTROENTEROLOGY, 2016, 150 (04) :835-853
[8]   Management of Hepatocellular Carcinoma: An Update [J].
Bruix, Jordi ;
Sherman, Morris .
HEPATOLOGY, 2011, 53 (03) :1020-1022
[9]   A radiomics-based nomogram for the preoperative prediction of posthepatectomy liver failure in patients with hepatocellular carcinoma [J].
Cai, Wei ;
He, Baochun ;
Hu, Min ;
Zhang, Wenyu ;
Xiao, Deqiang ;
Yu, Hao ;
Song, Qi ;
Xiang, Nan ;
Yang, Jian ;
He, Songshen ;
Huang, Yaohuan ;
Huang, Wenjie ;
Jia, Fucang ;
Fang, Chihua .
SURGICAL ONCOLOGY-OXFORD, 2019, 28 :78-85
[10]   Molecular and histological correlations in liver cancer [J].
Calderaro, Julien ;
Ziol, Marianne ;
Paradis, Valerie ;
Zucman-Rossi, Jessica .
JOURNAL OF HEPATOLOGY, 2019, 71 (03) :616-630