Mixed-mode fatigue crack growth analysis of I-shaped steel girders with trapezoidal corrugated-webs

被引:10
作者
Zhao, Yang [1 ]
Liu, Haijun [1 ]
Cai, Shunyao [2 ]
Sun, Huahuai [3 ]
机构
[1] North China Univ Water Resources & Elect Power, Sch Civil Engn & Commun, Zhengzhou, Peoples R China
[2] Chongqing Univ, Dept Construct Management, Chongqing, Peoples R China
[3] Yangzhou Univ, Coll Civil Sci & Engn, Yangzhou, Jiangsu, Peoples R China
关键词
Corrugated steel webs; Welded joints; Mixed-mode crack propagation; Weight function; STRESS-INTENSITY FACTORS; WEIGHT-FUNCTIONS; FLANGE WELD; BOX-GIRDER; PLUS II; BRIDGE; BEHAVIOR; PROPAGATION; STRENGTH; SAFETY;
D O I
10.1016/j.jcsr.2022.107153
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
In bridge industry, the composite box-girder with corrugated steel webs and concrete flanges is quite a common practice over recent years. However, this innovation encounters fatigue-sensitive details not fully investigated, especially in the research area of mixed-mode fatigue crack growth. This study addresses the mixed-mode fatigue crack growth analysis of an I-shaped corrugated web girder associated with the represented web-to-flange detail. A linear elastic fracture mechanics (LEFM) based numerical framework was established to simulate the mixedmode crack propagation. For comparison, a semi-analytical weight function framework was also introduced to predict the pure Mode-I crack propagation life of the same detail. Experimental results of a full-scale inclined corrugated web girder were employed to evaluate these two proposed frameworks. A parametric study was presented based on the proposed frameworks to investigate the effect of initial crack depth and crack shape on fatigue crack propagation life. By comparing the simulation results with test results, the applicability of the proposed LEFM-based numerical framework to the simulation of mixed-mode fatigue crack propagation behaviour in corrugated web girders was discussed.
引用
收藏
页数:15
相关论文
共 50 条
  • [11] Propeller blade structural reliability analysis considering mixed-mode fatigue crack growth
    Kim, Namkyu
    Kwon, Hyeok-Jun
    Kim, Hwasoo
    Lee, Dooyoul
    ENGINEERING FAILURE ANALYSIS, 2024, 158
  • [12] Mixed-mode I and II fatigue crack growth retardation due to overload: An experimental study
    Rege, Kristen
    Gronsund, Jorgen
    Pavlou, Dimitrios G.
    INTERNATIONAL JOURNAL OF FATIGUE, 2019, 129
  • [13] Analysis of fatigue crack growth under mixed-mode loading conditions for a pearlitic Grade 900A steel used in railway applications
    Nejad, Reza Masoudi
    Liu, Zhiliang
    ENGINEERING FRACTURE MECHANICS, 2021, 247
  • [14] A model for predicting the mixed-mode fatigue crack growth in a bonded joint
    Marannano, G.
    Pasta, A.
    Giallanza, A.
    FATIGUE & FRACTURE OF ENGINEERING MATERIALS & STRUCTURES, 2014, 37 (04) : 380 - 390
  • [15] On the validation of mixed-mode I/II crack growth theories for anisotropic rocks
    Sakha, Mahsa
    Nejati, Morteza
    Aminzadeh, Ali
    Ghouli, Saeid
    Saar, Martin O.
    Driesner, Thomas
    INTERNATIONAL JOURNAL OF SOLIDS AND STRUCTURES, 2022, 241
  • [16] Mixed mode fatigue crack growth studies in AISI 316 stainless steel
    Sajith, S.
    Shukla, S. S.
    Murthy, K. S. R. K.
    Robi, P. S.
    EUROPEAN JOURNAL OF MECHANICS A-SOLIDS, 2020, 80
  • [17] Computational Simulation of 3D Fatigue Crack Growth under Mixed-Mode Loading
    Alshoaibi, Abdulnaser M.
    APPLIED SCIENCES-BASEL, 2021, 11 (13):
  • [18] History effect in fatigue crack growth under mixed-mode loading conditions
    Decreuse, P. Y.
    Pommier, S.
    Gentot, L.
    Pattofatto, S.
    INTERNATIONAL JOURNAL OF FATIGUE, 2009, 31 (11-12) : 1733 - 1741
  • [19] AN AUTOMATIC PROCEDURE FOR MIXED-MODE CRACK-GROWTH ANALYSIS
    MI, Y
    ALIABADI, MH
    COMMUNICATIONS IN NUMERICAL METHODS IN ENGINEERING, 1995, 11 (02): : 167 - 177
  • [20] Mixed mode I/II/III fatigue crack growth in S355 steel
    Rozumek, D.
    Marciniak, Z.
    Lesiuk, G.
    Correia, J. A. F. O.
    2ND INTERNATIONAL CONFERENCE ON STRUCTURAL INTEGRITY, ICSI 2017, 2017, 5 : 896 - 903