Development of a ligand for in vivo imaging of mutant huntingtin in Huntington's disease

被引:18
作者
Bertoglio, Daniele [1 ]
Bard, Jonathan [2 ]
Hessmann, Manuela [3 ]
Liu, Longbin [2 ]
Gaertner, Annette [3 ]
De Lombaerde, Stef [1 ,4 ]
Huscher, Britta [3 ]
Zajicek, Franziska [1 ]
Miranda, Alan [1 ]
Peters, Finn [3 ]
Herrmann, Frank [3 ]
Schaertl, Sabine [3 ]
Vasilkovska, Tamara [5 ]
Brown, Christopher J. [6 ]
Johnson, Peter D. [6 ]
Prime, Michael E. [6 ]
Mills, Matthew R. [6 ]
Van der Linden, Annemie [5 ]
Mrzljak, Ladislav [2 ]
Khetarpal, Vinod [2 ]
Wang, Yuchuan [2 ]
Marchionini, Deanna M. [2 ]
Skinbjerg, Mette [2 ]
Verhaeghe, Jeroen [1 ]
Dominguez, Celia [2 ]
Staelens, Steven [1 ]
Munoz-Sanjuan, Ignacio [2 ]
机构
[1] Univ Antwerp, Mol Imaging Ctr Antwerp Mica, B-2610 Antwerp, Belgium
[2] CHDI Management CHDI Fdn, Los Angeles, CA 90045 USA
[3] Evotec SE, D-22419 Hamburg, Germany
[4] Antwerp Univ Hosp, Dept Nucl Med, B-2650 Edegem, Belgium
[5] Univ Antwerp, Bioimaging Lab, B-2610 Antwerp, Belgium
[6] Evotec Ltd, Abingdon OX14 4RZ, Oxon, England
关键词
TRINUCLEOTIDE REPEAT; MOUSE MODEL; PET; PROGRESSION; BINDING; GENE; DYSFUNCTION; RECEPTORS; REGION;
D O I
10.1126/scitranslmed.abm3682
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
Huntington's disease (HD) is a dominantly inherited neurodegenerative disorder caused by a CAG trinucleotide expansion in the huntingtin (HTT) gene that encodes the pathologic mutant HTT (mHTT) protein with an expanded polyglutamine (polyQ) tract. Whereas several therapeutic programs targeting mHTT expression have advanced to clinical evaluation, methods to visualize mHTT protein species in the living brain are lacking. Here, we demonstrate the development and characterization of a positron emission tomography (PET) imaging radioligand with high affinity and selectivity for mHTT aggregates. This small molecule radiolabeled with C-11 ([C-11]CHDI-180R) allowed noninvasive monitoring of mHTT pathology in the brain and could track region- and time-dependent suppression of mHTT in response to therapeutic interventions targeting mHTT expression in a rodent model. We further showed that in these animals, therapeutic agents that lowered mHTT in the striatum had a functional restorative effect that could be measured by preservation of striatal imaging markers, enabling a translational path to assess the functional effect of mHTT lowering.
引用
收藏
页数:13
相关论文
共 50 条
  • [41] In vivo imaging of brain glutamate defects in a knock-in mouse model of Huntington's disease
    Pepin, Jeremy
    Francelle, Laetitia
    Carrillo-de Sauvage, Maria-Angeles
    de Longprez, Lucie
    Gipchtein, Pauline
    Cambon, Karine
    Valette, Julien
    Brouillet, Emmanuel
    Flament, Julien
    NEUROIMAGE, 2016, 139 : 53 - 64
  • [42] Huntington's disease pattern of transcriptional dysregulation in the absence of mutant huntingtin is produced by knockout of neuronal GLT-1
    Laprairie, Robert B.
    Petr, Geraldine T.
    Sun, Yan
    Fischer, Kathryn D.
    Denovan-Wright, Eileen M.
    Rosenberg, Paul A.
    NEUROCHEMISTRY INTERNATIONAL, 2019, 123 : 85 - 94
  • [43] Suppression of MAPK11 or HIPK3 reduces mutant Huntingtin levels in Huntington's disease models
    Yu, Meng
    Fu, Yuhua
    Liang, Yijian
    Song, Haikun
    Yao, Yao
    Wu, Peng
    Yao, Yuwei
    Pan, Yuyin
    Wen, Xue
    Ma, Lixiang
    Hexige, Saiyin
    Ding, Yu
    Luo, Shouqing
    Lu, Boxun
    CELL RESEARCH, 2017, 27 (12) : 1441 - 1465
  • [44] ATRX induction by mutant huntingtin via Cdx2 modulates heterochromatin condensation and pathology in Huntington's disease
    Lee, J.
    Hong, Y. K.
    Jeon, G. S.
    Hwang, Y. J.
    Kim, K. Y.
    Seong, K. H.
    Jung, M-K
    Picketts, D. J.
    Kowall, N. W.
    Cho, K. S.
    Ryu, H.
    CELL DEATH AND DIFFERENTIATION, 2012, 19 (07) : 1109 - 1116
  • [45] Targeting mutant huntingtin for the development of disease-modifying therapy
    Appl, Thomas
    Kaltenbach, Linda
    Lo, Donald C.
    Terstappen, Georg C.
    DRUG DISCOVERY TODAY, 2012, 17 (21-22) : 1217 - 1223
  • [46] Effects of mutant huntingtin inactivation on Huntington disease-related behaviours in the BACHD mouse model
    Cheong, Rachel Y.
    Baldo, Barbara
    Sajjad, Muhammad U.
    Kirik, Deniz
    Petersen, Asa
    NEUROPATHOLOGY AND APPLIED NEUROBIOLOGY, 2021, 47 (04) : 564 - 578
  • [47] Matrix Metalloproteinases Are Modifiers of Huntingtin Proteolysis and Toxicity in Huntington's Disease
    Miller, John P.
    Holcomb, Jennifer
    Al-Ramahi, Ismael
    de Haro, Maria
    Gafni, Juliette
    Zhang, Ningzhe
    Kim, Eugene
    Sanhueza, Mario
    Torcassi, Cameron
    Kwak, Seung
    Botas, Juan
    Hughes, Robert E.
    Ellerby, Lisa M.
    NEURON, 2010, 67 (02) : 199 - 212
  • [48] "Huntingtin Holiday": Progress toward an Antisense Therapy for Huntington's Disease
    Lu, Xiao-Hong
    Yang, X. William
    NEURON, 2012, 74 (06) : 964 - 966
  • [49] Emerging Therapies for Huntington's Disease - Focus on N-Terminal Huntingtin and Huntingtin Exon 1
    van der Bent, M. Leontien
    Evers, Melvin M.
    Valles, Astrid
    BIOLOGICS-TARGETS & THERAPY, 2022, 16 : 141 - 160
  • [50] Mutant huntingtin's interaction with mitochondrial protein Drp1 impairs mitochondrial biogenesis and causes defective axonal transport and synaptic degeneration in Huntington's disease
    Shirendeb, Ulziibat P.
    Calkins, Marcus J.
    Manczak, Maria
    Anekonda, Vishwanath
    Dufour, Brett
    McBride, Jodi L.
    Mao, Peizhong
    Reddy, P. Hemachandra
    HUMAN MOLECULAR GENETICS, 2012, 21 (02) : 406 - 420