Development of automatic measurement for patellar height based on deep learning and knee radiographs

被引:24
|
作者
Ye, Qin [1 ]
Shen, Qiang [1 ]
Yang, Wei [1 ]
Huang, Shuai [1 ]
Jiang, Zhiqiang [2 ]
He, Linyang [2 ]
Gong, Xiangyang [1 ,3 ]
机构
[1] Hangzhou Med Coll, Zhejiang Prov Peoples Hosp, Dept Radiol, Affiliated Peoples Hosp, Hangzhou, Peoples R China
[2] Hangzhou Jianpei Technol Co Ltd, Hangzhou, Peoples R China
[3] Hangzhou Med Coll, Inst Artificial Intelligence & Remote Imaging, Hangzhou, Peoples R China
关键词
Deep learning; Knee; Radiography; CONVOLUTIONAL NEURAL-NETWORKS; MODEL; SEGMENTATION; RELIABILITY; FRAMEWORK;
D O I
10.1007/s00330-020-06856-z
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
Objectives To develop and evaluate the performance of a deep learning-based system for automatic patellar height measurements using knee radiographs. Methods The deep learning-based algorithm was developed with a data set consisting of 1018 left knee radiographs for the prediction of patellar height parameters, specifically the Insall-Salvati index (ISI), Caton-Deschamps index (CDI), modified Caton-Deschamps index (MCDI), and Keerati index (KI). The performance and generalizability of the algorithm were tested with 200 left knee and 200 right knee radiographs, respectively. The intra-class correlation coefficient (ICC), Pearson correlation coefficient, mean absolute difference (MAD), root mean square (RMS), and Bland-Altman plots for predictions by the system were evaluated in comparison with manual measurements as the reference standard. Results Compared with the reference standard, the deep learning-based algorithm showed high accuracy in predicting the ISI, CDI, and KI (left knee ICC = 0.91-0.95, r = 0.84-0.91, MAD = 0.02-0.05, RMS = 0.02-0.07; right knee ICC = 0.87-0.96, r = 0.78-0.92, MAD = 0.02-0.06, RMS = 0.02-0.10), but not the MCDI (left knee ICC = 0.65, r = 0.50, MAD = 0.14, RMS = 0.18; right knee ICC = 0.62, r = 0.47, MAD = 0.15, RMS = 0.20). The performance of the algorithm met or exceeded that of manual determination of ISI, CDI, and KI by radiologists. Conclusions In its current state, the developed system can predict the ISI, CDI, and KI for both left and right knee radiographs as accurately as radiologists. Training the system further with more data would increase its utility in helping radiologists measure patellar height in clinical practice.
引用
收藏
页码:4974 / 4984
页数:11
相关论文
共 50 条
  • [31] Automatic heart girth measurement for cattle based on deep learning
    Du, Ao
    Guo, Hao
    Lu, Jie
    Su, Yang
    Ruchay, Alexey
    Pezzuolo, Andrea
    2021 IEEE INTERNATIONAL WORKSHOP ON METROLOGY FOR AGRICULTURE AND FORESTRY (IEEE METROAGRIFOR 2021), 2021, : 27 - 31
  • [32] Automated measurement and grading of knee cartilage thickness: a deep learning-based approach
    Guo, Jiangrong
    Yan, Pengfei
    Qin, Yong
    Liu, Meina
    Ma, Yingkai
    Li, Jaingqi
    Wang, Ren
    Luo, Hao
    Lv, Songcen
    FRONTIERS IN MEDICINE, 2024, 11
  • [33] Development and validation of a deep learning-based automatic auscultatory blood pressure measurement method
    Pan, Fan
    He, Peiyu
    Wang, He
    Xu, Yuhang
    Pu, Xiaobo
    Zhao, Qijun
    Chen, Fei
    Zheng, Dingchang
    BIOMEDICAL SIGNAL PROCESSING AND CONTROL, 2021, 68
  • [34] A Deep Learning-Based Model for Classifying Osteoporotic Lumbar Vertebral Fractures on Radiographs: A Retrospective Model Development and Validation Study
    Ono, Yohei
    Suzuki, Nobuaki
    Sakano, Ryosuke
    Kikuchi, Yasuka
    Kimura, Tasuku
    Sutherland, Kenneth
    Kamishima, Tamotsu
    JOURNAL OF IMAGING, 2023, 9 (09)
  • [35] Automatic measurement of the patellofemoral joint parameters in the Laurin view: a deep learning–based approach
    Tuya E
    Rile Nai
    Xiang Liu
    Cen Wang
    Jing Liu
    Shijia Li
    Jiahao Huang
    Junhua Yu
    Yaofeng Zhang
    Weipeng Liu
    Xiaodong Zhang
    Xiaoying Wang
    European Radiology, 2023, 33 (1) : 566 - 577
  • [36] Automatic Segmentation of Pneumothorax in Chest Radiographs Based on a Two-Stage Deep Learning Method
    Wang, Xiyue
    Yang, Sen
    Lan, Jun
    Fang, Yuqi
    He, Jianhui
    Wang, Minghui
    Zhang, Jing
    Han, Xiao
    IEEE TRANSACTIONS ON COGNITIVE AND DEVELOPMENTAL SYSTEMS, 2022, 14 (01) : 205 - 218
  • [37] A deep learning-based algorithm for automatic detection of perilunate dislocation in frontal wrist radiographs
    Majzoubi, Negin
    Allegre, Remi
    Wemmert, Cedric
    Liverneaux, Philippe
    HAND SURGERY & REHABILITATION, 2024, 43 (04)
  • [38] Automatic Segmentation of Multiple Structures in Knee Arthroscopy Using Deep Learning
    Jonmohamadi, Yaqub
    Takeda, Yu
    Liu, Fengbei
    Sasazawa, Fumio
    Maicas, Gabriel
    Crawford, Ross
    Roberts, Jonathan
    Pandey, Ajay K.
    Carneiro, Gustavo
    IEEE ACCESS, 2020, 8 : 51853 - 51861
  • [39] Development and validation of a deep learning-based model to distinguish acetabular fractures on pelvic anteroposterior radiographs
    Ye, Pengyu
    Li, Sihe
    Wang, Zhongzheng
    Tian, Siyu
    Luo, Yi
    Wu, Zhanyong
    Zhuang, Yan
    Zhang, Yingze
    Grzegorzek, Marcin
    Hou, Zhiyong
    FRONTIERS IN PHYSIOLOGY, 2023, 14
  • [40] sEMG-based deep learning framework for the automatic detection of knee abnormality
    Vijayvargiya, Ankit
    Singh, Bharat
    Kumari, Nidhi
    Kumar, Rajesh
    SIGNAL IMAGE AND VIDEO PROCESSING, 2023, 17 (04) : 1087 - 1095