Embedding into free topological vector spaces on compact metrizable spaces

被引:2
作者
Gabriyelyan, Saak S. [1 ]
Morris, Sidney A. [2 ,3 ]
机构
[1] Ben Gurion Univ Negev, Dept Math, PO 653, Beer Sheva, Israel
[2] Federat Univ Australia, Fac Sci & Technol, POB 663, Ballarat, Vic 3353, Australia
[3] La Trobe Univ, Dept Math & Stat, Melbourne, Vic 3086, Australia
关键词
Free topological vector space; Free locally convex space; Embedding; Finite-dimensional; Zero-dimensional; Compact; Cantor space; Hilbert cube; UNIT INTERVAL; SUBGROUPS;
D O I
10.1016/j.topol.2017.09.008
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
For a Tychonoff space X, let V(X) be the free topological vector space over X. Denote by II, G, Q and S-k the closed unit interval, the Cantor space, the Hilbert cube Q = I-N and the k-dimensional unit sphere for k is an element of N, respectively. The main result is that V(R) can be embedded as a topological vector space in V(I). It is also shown that for a compact Hausdorff space K: (1) V(K) can be embedded in V(G) if and only if K is zero-dimensional and metrizable; (2) V(K) can be embedded in V(Q) if and only if K is metrizable; (3) V(S-k) can be embedded in V(I-k); (4) V(K) can be embedded in V(I) implies that K is finite-dimensional and metrizable. (C) 2017 Elsevier B.V. All rights reserved.
引用
收藏
页码:33 / 43
页数:11
相关论文
共 50 条
[41]   Embedding theorem on RD-spaces [J].
Han, Yanchang .
JOURNAL OF INEQUALITIES AND APPLICATIONS, 2015,
[42]   Embedding Schramm spaces into Chanturiya classes [J].
Goodarzi, Milad Moazami .
BANACH JOURNAL OF MATHEMATICAL ANALYSIS, 2020, 15 (01)
[43]   Embedding theorems of Besov and Triebel-Lizorkin spaces on spaces of homogeneous type [J].
Dachun Yang .
Science in China Series A: Mathematics, 2003, 46 :187-199
[44]   Embedding theorems of Besov and Triebel-Lizorkin spaces on spaces of homogeneous type [J].
Yang, DC .
SCIENCE IN CHINA SERIES A-MATHEMATICS, 2003, 46 (02) :187-199
[45]   Embedding theorems of Besov and Triebel-Lizorkin spaces on spaces of homogeneous type [J].
杨大春 .
Science China Mathematics, 2003, (02) :187-199
[46]   Compact homogeneous spaces of reductive Lie groups and spaces close to them [J].
Gorbatsevich, V. V. .
SBORNIK MATHEMATICS, 2016, 207 (03) :342-357
[47]   AGGREGATION OF FUZZY VECTOR SPACES [J].
Bejines, Carlos .
KYBERNETIKA, 2023, 59 (05)
[48]   Fuzzy Ideal Supra Topological Spaces [J].
Abbas, Fadhil .
ADVANCES IN FUZZY SYSTEMS, 2020, 2020
[49]   Products of topological spaces and families of filters [J].
Lipparini, Paolo .
COMMENTATIONES MATHEMATICAE UNIVERSITATIS CAROLINAE, 2023, 64 (03) :373-394
[50]   Ultrafilter Convergence in Ordered Topological Spaces [J].
Lipparini, Paolo .
ORDER-A JOURNAL ON THE THEORY OF ORDERED SETS AND ITS APPLICATIONS, 2016, 33 (02) :269-287