Embedding into free topological vector spaces on compact metrizable spaces

被引:2
作者
Gabriyelyan, Saak S. [1 ]
Morris, Sidney A. [2 ,3 ]
机构
[1] Ben Gurion Univ Negev, Dept Math, PO 653, Beer Sheva, Israel
[2] Federat Univ Australia, Fac Sci & Technol, POB 663, Ballarat, Vic 3353, Australia
[3] La Trobe Univ, Dept Math & Stat, Melbourne, Vic 3086, Australia
关键词
Free topological vector space; Free locally convex space; Embedding; Finite-dimensional; Zero-dimensional; Compact; Cantor space; Hilbert cube; UNIT INTERVAL; SUBGROUPS;
D O I
10.1016/j.topol.2017.09.008
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
For a Tychonoff space X, let V(X) be the free topological vector space over X. Denote by II, G, Q and S-k the closed unit interval, the Cantor space, the Hilbert cube Q = I-N and the k-dimensional unit sphere for k is an element of N, respectively. The main result is that V(R) can be embedded as a topological vector space in V(I). It is also shown that for a compact Hausdorff space K: (1) V(K) can be embedded in V(G) if and only if K is zero-dimensional and metrizable; (2) V(K) can be embedded in V(Q) if and only if K is metrizable; (3) V(S-k) can be embedded in V(I-k); (4) V(K) can be embedded in V(I) implies that K is finite-dimensional and metrizable. (C) 2017 Elsevier B.V. All rights reserved.
引用
收藏
页码:33 / 43
页数:11
相关论文
共 50 条
[31]   Locally Compact Spaces with Defects [J].
Zailai, Mohmmad .
EUROPEAN JOURNAL OF PURE AND APPLIED MATHEMATICS, 2023, 16 (02) :1228-1235
[32]   SPECIAL POINTS IN COMPACT SPACES [J].
BELL, M .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1994, 122 (02) :619-624
[33]   ON ALMOST COUNTABLY COMPACT SPACES [J].
Song, Yankui ;
Zhao, Hongying .
MATEMATICKI VESNIK, 2012, 64 (02) :159-165
[34]   INVERSE LIMITS OF COMPACT SPACES [J].
Stone, A. H. .
TOPOLOGY AND ITS APPLICATIONS, 1979, 10 (02) :203-211
[35]   Compact spaces of diversity two [J].
Norden, J ;
Purisch, S ;
Rajagopalan, M .
TOPOLOGY AND ITS APPLICATIONS, 1996, 70 (01) :1-24
[36]   Base multiplicity in compact and generalized compact spaces [J].
Balogh, Z ;
Gruenhage, G .
TOPOLOGY AND ITS APPLICATIONS, 2001, 115 (02) :139-151
[37]   Embedding products of graphs into Euclidean spaces [J].
Skopenkov, M .
FUNDAMENTA MATHEMATICAE, 2003, 179 (03) :191-198
[38]   Embedding theorem on RD-spaces [J].
Yanchang Han .
Journal of Inequalities and Applications, 2015
[39]   Embedding symmetric products in euclidean spaces [J].
Castañeda, E .
CONTINUUM THEORY, 2002, 230 :67-79
[40]   Embedding Schramm spaces into Chanturiya classes [J].
Milad Moazami Goodarzi .
Banach Journal of Mathematical Analysis, 2021, 15