A Fast and Accurate Approach for Real-Time Seizure Detection in the IoMT

被引:0
作者
Abu Sayeed, Md [1 ]
Mohanty, Saraju P. [1 ]
Kougianos, Elias [2 ]
Zaveri, Hitten [3 ]
机构
[1] Univ North Texas, Dept Comp Sci & Engn, Denton, TX 76203 USA
[2] Univ North Texas, Dept Engn Technol, Denton, TX 76203 USA
[3] Yale Univ, Dept Neurol, New Haven, CT 06520 USA
来源
2018 IEEE INTERNATIONAL SMART CITIES CONFERENCE (ISC2) | 2018年
关键词
IoT; Electroencephalogram (EEG); Epilepsy; Seizure Detection; Feature Extraction; Hjorth Parameters; EPILEPTIC SEIZURES; FEATURE-EXTRACTION;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We propose an EEG-based seizure detection method which uses the discrete wavelet transform (DWT), Hjorth parameters and a k-NN classifier. Seizure detection is performed in three stages. In the first stage, EEG signals are decomposed by the DWT into sub-bands and Hjorth parameters are extracted from each of these sub-bands. In the second stage, a k-NN classifier is used to classify the EEG data. The results demonstrate a significant difference in Hjorth parameters between interictal and ictal EEG with ictal EEG being less complex than interictal EEG. We report an accuracy of 100% for a classification of normal vs. ictal EEG and 97.9% for normal and interictal vs. ictal EEG. We propose an Internet of Medical Things (IoMT) platform for performing seizure detection. The proposed framework accommodates the proposed scheme for seizure detection and allows communication of detection results. The IoMT framework also allows the adjustment of seizure detection parameters in response to updated performance evaluations, and possible changes in seizure and signal characteristics as well as the incorporation of other sensor signals to provide an adaptive, multi-modal framework for detecting seizures.
引用
收藏
页数:5
相关论文
共 29 条
  • [1] Nonrandomness, nonlinear dependence, and nonstationarity of electroencephalographic recordings from epilepsy patients
    Andrzejak, Ralph G.
    Schindler, Kaspar
    Rummel, Christian
    [J]. PHYSICAL REVIEW E, 2012, 86 (04)
  • [2] Indications of nonlinear deterministic and finite-dimensional structures in time series of brain electrical activity: Dependence on recording region and brain state
    Andrzejak, RG
    Lehnertz, K
    Mormann, F
    Rieke, C
    David, P
    Elger, CE
    [J]. PHYSICAL REVIEW E, 2001, 64 (06): : 8 - 061907
  • [3] Bharucha NE, 1997, EPILEPSIA, V38, P614
  • [4] Automated EEG-Based Epileptic Seizure Detection Using Deep Neural Networks
    Birjandtalab, J.
    Heydarzadeh, M.
    Nourani, M.
    [J]. 2017 IEEE INTERNATIONAL CONFERENCE ON HEALTHCARE INFORMATICS (ICHI), 2017, : 552 - 555
  • [5] NEAREST NEIGHBOR PATTERN CLASSIFICATION
    COVER, TM
    HART, PE
    [J]. IEEE TRANSACTIONS ON INFORMATION THEORY, 1967, 13 (01) : 21 - +
  • [6] Dolgin E., 2018, THIS SEIZURE DETECTI
  • [7] Therapeutic devices for epilepsy
    Fisher, Robert S.
    [J]. ANNALS OF NEUROLOGY, 2012, 71 (02) : 157 - 168
  • [8] Seizure Prediction 6: From Mechanisms to Engineered Interventions for Epilepsy
    Gluckman, Bruce J.
    Schevon, Catherine A.
    [J]. JOURNAL OF CLINICAL NEUROPHYSIOLOGY, 2015, 32 (03) : 181 - 187
  • [9] EEG signal classification using wavelet feature extraction and neural networks
    Jahankhani, Pari
    Kodogiannis, Vassilis
    Revett, Kenneth
    [J]. IEEE JOHN VINCENT ATANASOFF 2006 INTERNATIONAL SYMPOSIUM ON MODERN COMPUTING, PROCEEDINGS, 2006, : 120 - +
  • [10] Sudden death in epilepsy: Insights from the last 25 years
    Jones, Lliwen A.
    Thomas, Rhys H.
    [J]. SEIZURE-EUROPEAN JOURNAL OF EPILEPSY, 2017, 44 : 232 - 236