Gradients in gene essentiality reshape antibacterial research

被引:11
|
作者
Hogan, Andrew M. [1 ]
Cardona, Silvia T. [1 ,2 ]
机构
[1] Univ Manitoba, Dept Microbiol, 45 Chancellors Circle, Winnipeg, MB R3T 2N2, Canada
[2] Univ Manitoba, Dept Med Microbiol & Infect Dis, Max Rady Coll Med, Room 543-745,Bannatyne Ave, Winnipeg, MB, Canada
基金
加拿大健康研究院;
关键词
essential gene; antibiotic discovery; genetic interaction; conditional essentiality; transposon mutagenesis; CRISPRi; cystic fibrosis; CONDITIONALLY ESSENTIAL GENES; TRANSPOSON MUTANT LIBRARY; SEQUENCE-SPECIFIC CONTROL; GENOME-SCALE ANALYSIS; ESCHERICHIA-COLI; CYSTIC-FIBROSIS; MYCOBACTERIUM-TUBERCULOSIS; PSEUDOMONAS-AERUGINOSA; BACILLUS-SUBTILIS; PROTEIN-DEGRADATION;
D O I
10.1093/femsre/fuac005
中图分类号
Q93 [微生物学];
学科分类号
071005 ; 100705 ;
摘要
Essential genes encode the processes that are necessary for life. Until recently, commonly applied binary classifications left no space between essential and non-essential genes. In this review, we frame bacterial gene essentiality in the context of genetic networks. We explore how the quantitative properties of gene essentiality are influenced by the nature of the encoded process, environmental conditions and genetic background, including a strain's distinct evolutionary history. The covered topics have important consequences for antibacterials, which inhibit essential processes. We argue that the quantitative properties of essentiality can thus be used to prioritize antibacterial cellular targets and desired spectrum of activity in specific infection settings. We summarize our points with a case study on the core essential genome of the cystic fibrosis pathobiome and highlight avenues for targeted antibacterial development. This review explores the spectrum of gene essentiality in the context of the environment, genetic networks and evolution, with the goal of highlighting its applicability to antimicrobial research targeting specific pathogens and infection settings.
引用
收藏
页数:27
相关论文
共 50 条
  • [21] Conditional Essentiality of the csrA Gene in Escherichia coli
    Timmermans, Johan
    Van Melderen, Laurence
    JOURNAL OF BACTERIOLOGY, 2009, 191 (05) : 1722 - 1724
  • [22] In Vivo Gene Essentiality and Metabolism in Bordetella pertussis
    Gonyar, Laura A.
    Gelbach, Patrick E.
    McDuffie, Dennis G.
    Koeppel, Alexander F.
    Chen, Qing
    Lee, Gloria
    Temple, Louise M.
    Stibitz, Scott
    Hewlett, Erik L.
    Papin, Jason A.
    Damron, F. Heath
    Eby, Joshua C.
    MSPHERE, 2019, 4 (03):
  • [23] Reframing gene essentiality in terms of adaptive flexibility
    Guzman, Gabriela I.
    Olson, Connor A.
    Hefner, Ying
    Phaneuf, Patrick V.
    Catoiu, Edward
    Crepaldi, Lais B.
    Micas, Lucas Goldschmidt
    Palsson, Bernhard O.
    Feist, Adam M.
    BMC SYSTEMS BIOLOGY, 2018, 12
  • [24] Gene essentiality, gene duplicability and protein connectivity in human and mouse
    Liang, Han
    Li, Wen-Hsiung
    TRENDS IN GENETICS, 2007, 23 (08) : 375 - 378
  • [25] Advances in boron essentiality research: Proceedings of a symposium
    Coughlin, JR
    JOURNAL OF TRACE ELEMENTS IN EXPERIMENTAL MEDICINE, 1999, 12 (03): : 171 - 174
  • [26] A WHO blueprint for action to reshape dementia research
    Rodrigo Cataldi
    Perminder S. Sachdev
    Neerja Chowdhary
    Katrin Seeher
    Adam Bentvelzen
    Vasee Moorthy
    Tarun Dua
    Nature Aging, 2023, 3 : 469 - 471
  • [27] A method for demonstrating gene essentiality in Staphylococcus aureus
    Jana, M
    Luong, TT
    Komatsuzawa, H
    Shigeta, M
    Lee, CY
    PLASMID, 2000, 44 (01) : 100 - 104
  • [28] Large Models Reshape AI Research and Applications
    Ludwig, Bernd
    KUNSTLICHE INTELLIGENZ, 2023, 37 (2-4): : 111 - 112
  • [29] Gene essentiality determines chromosome organisation in bacteria
    Rocha, EPC
    Danchin, A
    NUCLEIC ACIDS RESEARCH, 2003, 31 (22) : 6570 - 6577
  • [30] Funding: NINDS seeks to reshape brain research
    Arnold, Carrie
    LANCET, 2014, 383 (9918): : 684 - 684