An Analytic Framework for the Supercritical Lane-Emden Equation and its Gradient Flow

被引:9
作者
Blatt, Simon [1 ]
Struwe, Michael [2 ]
机构
[1] Karlsruhe Inst Technol, Fak Math, D-76128 Karlsruhe, Germany
[2] ETH, Dept Math, CH-8092 Zurich, Switzerland
基金
瑞士国家科学基金会;
关键词
PARTIAL REGULARITY; POSITIVE SOLUTIONS; BLOW-UP; ASYMPTOTIC-BEHAVIOR; ELLIPTIC-EQUATIONS; WEAK SOLUTIONS; HARMONIC MAPS; II BLOWUP; DOMAINS;
D O I
10.1093/imrn/rnt359
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The natural setting for the Lane-Emden equation -Delta u = vertical bar u vertical bar(p-2)u on a domain Omega subset of R-n, n >= 3, for supercritical exponents p > 2* = 2n/(n-2) is identified as the space of functions u is an element of H-0(1) boolean AND L-p(Omega) with finite scale-invariant Morrey norms. We show that this Morrey regularity is propagated by the heat flow associated with this equation, and we study the blow-up profiles.
引用
收藏
页码:2342 / 2385
页数:44
相关论文
共 40 条
[1]  
ADAMS DR, 1975, DUKE MATH J, V42, P765, DOI 10.1215/S0012-7094-75-04265-9
[2]  
[Anonymous], 2008, Variational Methods, Applications to Nonlinear Partial Differential Equations and Hamiltonian Systems
[3]  
[Anonymous], 1991, LECT NOTES MATH
[4]  
[Anonymous], ARXIVMATH0211159
[5]  
[Anonymous], 1986, COMMUNICATIONS PURE, V39, pS17
[6]   A nonlinear heat equation with singular initial data [J].
Brezis, H ;
Cazenave, T .
JOURNAL D ANALYSE MATHEMATIQUE, 1996, 68 :277-304
[7]  
Brezis H, 1985, FRONTIERS MATH SCI
[8]   PARTIAL REGULARITY OF SUITABLE WEAK SOLUTIONS OF THE NAVIER-STOKES EQUATIONS [J].
CAFFARELLI, L ;
KOHN, R ;
NIRENBERG, L .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1982, 35 (06) :771-831
[9]   On partial regularity of the borderline solution of semilinear parabolic problems [J].
Chou, Kai-Seng ;
Du, Shi-Zhong ;
Zheng, Gao-Feng .
CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2007, 30 (02) :251-275
[10]   Sign-changing solutions for supercritical elliptic problems in domains with small holes [J].
Dancer, E. N. ;
Wei, Juncheng .
MANUSCRIPTA MATHEMATICA, 2007, 123 (04) :493-511