Port-Hamiltonian Flight Control of a Fixed-Wing Aircraft

被引:13
作者
Fahmi, Jean-Michel [1 ,2 ]
Woolsey, Craig A. [1 ,2 ]
机构
[1] Kevin T Crofton Dept Aerosp & Ocean Engn, Blacksburg, VA 24061 USA
[2] Virginia Tech, Blacksburg, VA 24060 USA
基金
美国国家科学基金会; 美国国家航空航天局;
关键词
Aerodynamics; Aircraft; Force; Atmospheric modeling; Aerospace control; Vehicle dynamics; Mathematical model; Flight vehicle dynamics; Lyapunov methods; nonlinear control systems; port-Hamiltonian systems (PHSs); PASSIVITY-BASED CONTROL; INTERCONNECTION; SLENDER;
D O I
10.1109/TCST.2021.3059928
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This brief addresses the problem of stabilizing steady, wing level flight of a fixed-wing aircraft to a specified inertial velocity (speed, course, and climb angle). The aircraft is modeled as a port-Hamiltonian system and the passivity of this system is leveraged in devising the nonlinear control law. The aerodynamic force model in the port-Hamiltonian formulation is quite general; the static, state feedback control scheme requires only basic assumptions concerning lift, side force, and drag. Following an energy-shaping approach, the static state feedback control law is designed to leverage the open-loop system's port-Hamiltonian structure in order to construct a control Lyapunov function. Asymptotic stability of the desired flight condition is guaranteed within a large region of attraction. Simulations comparing the proposed flight controller with dynamic inversion suggest it is more robust to uncertainty in aerodynamics.
引用
收藏
页码:408 / 415
页数:8
相关论文
共 25 条
[1]  
Acosta JA, 2014, IEEE DECIS CONTR P, P673, DOI 10.1109/CDC.2014.7039459
[2]  
[Anonymous], 1972, Dynamics of atmospheric flight
[3]  
[Anonymous], 1995, Adaptive Control
[4]  
Battista T, 2017, 2017 IEEE CONFERENCE ON CONTROL TECHNOLOGY AND APPLICATIONS (CCTA 2017), P217, DOI 10.1109/CCTA.2017.8062466
[5]  
Fahmi J.-M.-W., 2018, P ATM FLIGHT MECH C, P3620
[6]   Trajectory tracking control of port-controlled Hamiltonian systems via generalized canonical transformations [J].
Fujimoto, K ;
Sakurama, K ;
Sugie, T .
AUTOMATICA, 2003, 39 (12) :2059-2069
[7]   A novel induction motor control scheme using IDA-PBC [J].
González H. ;
Duarte-Mermoud M.A. ;
Pelissier I. ;
Travieso-Torres J.C. ;
Ortega R. .
Journal of Control Theory and Applications, 2008, 6 (01) :59-68
[8]  
Grauer J.A., 2014, AIAA Atmospheric Flight Mechanics Conference, P0542, DOI [DOI 10.2514/6.2014, 10.2514/6.2014-0542, DOI 10.2514/6.2014-0542]
[9]  
Guerrero ME, 2015, INT CONF UNMAN AIRCR, P470, DOI 10.1109/ICUAS.2015.7152325
[10]  
Hovakimyan N, 2010, ADV DES CONTROL, P1, DOI 10.1137/1.9780898719376