Generalization of Samuelson's inequality and location of eigenvalues

被引:4
|
作者
Sharma, R. [1 ]
Saini, R. [1 ]
机构
[1] HP Univ, Dept Math, Shimla 171005, India
来源
PROCEEDINGS OF THE INDIAN ACADEMY OF SCIENCES-MATHEMATICAL SCIENCES | 2015年 / 125卷 / 01期
关键词
Maximum deviation; central moments; Hermitian matrix; eigenvalues; condition number; polynomial; roots; BOUNDS; VARIANCE; DEVIANT;
D O I
10.1007/s12044-015-0216-9
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove a generalization of Samuelson's inequality for higher order central moments. Bounds for the eigenvalues are obtained when a given complex n x n matrix has real eigenvalues. Likewise, we discuss bounds for the roots of polynomial equations.
引用
收藏
页码:103 / 111
页数:9
相关论文
共 50 条
  • [1] Generalization of Samuelson’s inequality and location of eigenvalues
    R SHARMA
    R SAINI
    Proceedings - Mathematical Sciences, 2015, 125 : 103 - 111
  • [2] A Generalization of a Levitin and Parnovski Universal Inequality for Eigenvalues
    Ilias, Said
    Makhoul, Ola
    JOURNAL OF GEOMETRIC ANALYSIS, 2012, 22 (01) : 206 - 222
  • [3] A Generalization of a Levitin and Parnovski Universal Inequality for Eigenvalues
    Saïd Ilias
    Ola Makhoul
    Journal of Geometric Analysis, 2012, 22 : 206 - 222
  • [4] SOME GENERALIZATIONS AND PROBABILITY VERSIONS OF SAMUELSON'S INEQUALITY
    Jin, Hongwei
    Benitez, Julio
    MATHEMATICAL INEQUALITIES & APPLICATIONS, 2017, 20 (01): : 1 - 12
  • [5] A NOTE ON VARIANCE BOUNDS AND LOCATION OF EIGENVALUES
    Sharma, R.
    Sharma, A.
    Saini, R.
    JOURNAL OF MATHEMATICAL INEQUALITIES, 2021, 15 (01): : 67 - 80
  • [6] A higher dimensional generalization of Hersch-Payne-Schiffer inequality for Steklov eigenvalues
    Yang, Liangwei
    Yu, Chengjie
    JOURNAL OF FUNCTIONAL ANALYSIS, 2017, 272 (10) : 4122 - 4130
  • [7] STEFFENSEN'S GENERALIZATION OF CEBYSEV INEQUALITY
    Awan, K. M.
    Pecaric, J.
    Rehman, Atiq Ur
    Journal of Mathematical Inequalities, 2015, 9 (01): : 155 - 163
  • [8] Generalization of the eigenvalues by contour integrals
    Tanriverdi, Tanfer
    Mcleod, John Bryce
    APPLIED MATHEMATICS AND COMPUTATION, 2007, 189 (02) : 1765 - 1773
  • [9] Generalization of cyclic refinements of Jensen's inequality by Fink's identity
    Mehmood, Nasir
    Butt, Saad Ihsan
    Horvath, Laszlo
    Pecaric, Josip
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2018,
  • [10] A Harnack inequality for Dirichlet eigenvalues
    Chung, F
    Yau, ST
    JOURNAL OF GRAPH THEORY, 2000, 34 (04) : 247 - 257