Preparation of giant lipid vesicles with controllable sizes by a modified hydrophilic polydimethylsiloxane microarray chip

被引:7
作者
Fan, Ting [1 ]
Wang, Qiong [1 ]
Hu, Ning [1 ,2 ]
Liao, Yanjian [1 ,2 ]
Chen, Xi [1 ]
Wang, Zhenyu [3 ]
Yang, Zhong [4 ]
Yang, Jun [1 ,2 ]
Qian, Shizhi [5 ]
机构
[1] Chongqing Univ, Bioengn Coll, Minist Educ, Key Lab Biorheol Sci & Technol, Chongqing 400030, Peoples R China
[2] Chongqing Univ, Chongqing Engn Res Ctr Med Elect Technol, Chongqing 400030, Peoples R China
[3] Chongqing Med Univ, Dept Biomed Engn, Chongqing 400016, Peoples R China
[4] Third Mil Med Univ, Southwest Hosp, Dept Lab Med, Chongqing 400038, Peoples R China
[5] Old Dominion Univ, Dept Mech & Aerosp Engn, Norfolk, VA 23529 USA
基金
中国国家自然科学基金;
关键词
Microarray; Micro-aperture; Patterned lipid film; Controllable size; Giant lipid vesicles; UNILAMELLAR VESICLES; ELECTROFORMATION; LIPOSOMES; BILAYERS; ARRAYS; FILMS;
D O I
10.1016/j.jcis.2018.10.034
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
This paper presents an accessible method to prepare giant lipid vesicles (GLVs) with controllable sizes based on the quick formation of patterned lipid films. Lipid solutions naturally penetrate into arrayed micro-apertures on a modified hydrophilic Polydimethylsiloxane (PDMS) chip, and excess lipid films on the surface are removed by a glass slide. Three main factors, the depth and diameter of the micro-apertures and concentration of the lipid solution, were investigated to obtain an optimal preparation condition. Based on this condition, the formed GLVs have a controllable size and narrow size distribution (the standard deviation < 5 mu m). By controlling the diameter of the micro-aperture and concentration of the lipid solution, GLVs with various sizes (23, 48, 66 and 82 mu m) can be formed. (C) 2018 Elsevier Inc. All rights reserved.
引用
收藏
页码:53 / 61
页数:9
相关论文
共 38 条
  • [1] Adamson A.W., 1967, Physical Chemistry of Surfaces
  • [2] LIPOSOME ELECTROFORMATION
    ANGELOVA, MI
    DIMITROV, DS
    [J]. FARADAY DISCUSSIONS, 1986, 81 : 303 - +
  • [3] Pharmacology of drugs formulated with DepoFoaM™ -: A sustained release drug delivery system for parenteral administration using multivesicular liposome technology
    Angst, Martin S.
    Drover, David R.
    [J]. CLINICAL PHARMACOKINETICS, 2006, 45 (12) : 1153 - 1176
  • [4] Two photon fluorescence microscopy of coexisting lipid domains in giant unilamellar vesicles of binary phospholipid mixtures
    Bagatolli, LA
    Gratton, E
    [J]. BIOPHYSICAL JOURNAL, 2000, 78 (01) : 290 - 305
  • [5] Capillary flow as the cause of ring stains from dried liquid drops
    Deegan, RD
    Bakajin, O
    Dupont, TF
    Huber, G
    Nagel, SR
    Witten, TA
    [J]. NATURE, 1997, 389 (6653) : 827 - 829
  • [6] Preparation of Phospholipid Multilayer Patterns of Controlled Size and Thickness by Capillary Assembly on a Microstructured Substrate
    Diguet, Antoine
    Le Berre, Mael
    Chen, Yong
    Baigl, Damien
    [J]. SMALL, 2009, 5 (14) : 1661 - 1666
  • [7] A practical guide to giant vesicles. Probing the membrane nanoregime via optical microscopy
    Dimova, Rumiana
    Aranda, Said
    Bezlyepkina, Natalya
    Nikolov, Vesselin
    Riske, Karin A.
    Lipowsky, Reinhard
    [J]. JOURNAL OF PHYSICS-CONDENSED MATTER, 2006, 18 (28) : S1151 - S1176
  • [8] ENTROPY-DRIVEN TENSION AND BENDING ELASTICITY IN CONDENSED-FLUID MEMBRANES
    EVANS, E
    RAWICZ, W
    [J]. PHYSICAL REVIEW LETTERS, 1990, 64 (17) : 2094 - 2097
  • [9] Effect of sphingosine on domain morphology in giant vesicles
    Georgieva, Raina
    Koumanov, Kamen
    Momchilova, Albena
    Tessier, Cedric
    Staneva, Galya
    [J]. JOURNAL OF COLLOID AND INTERFACE SCIENCE, 2010, 350 (02) : 502 - 510
  • [10] Microfluidic Fabrication of Asymmetric Giant Lipid Vesicles
    Hu, Peichi C.
    Li, Su
    Malmstadt, Noah
    [J]. ACS APPLIED MATERIALS & INTERFACES, 2011, 3 (05) : 1434 - 1440