Emergent relationships with respect to burned area in global satellite observations and fire-enabled vegetation models

被引:104
作者
Forkel, Matthias [1 ]
Andela, Niels [2 ]
Harrison, Sandy P. [3 ]
Lasslop, Gitta [4 ]
van Marle, Margreet [5 ]
Chuvieco, Emilio [6 ]
Dorigo, Wouter [1 ]
Forrest, Matthew [4 ]
Hantson, Stijn [7 ]
Heil, Angelika [8 ]
Li, Fang [9 ]
Melton, Joe [10 ]
Sitch, Stephen [11 ]
Yue, Chao [12 ]
Arneth, Almut [13 ]
机构
[1] Tech Univ Wien, Dept Geodesy & Geoinformat, Climate & Environm Remote Sensing Grp, Vienna, Austria
[2] NASA, Goddard Space Flight Ctr, Biospher Sci Lab, Greenbelt, MD 20771 USA
[3] Univ Reading, Dept Geog & Environm Sci, Reading, Berks, England
[4] Senckenberg Biodivers & Climate Res Ctr, Frankfurt, Germany
[5] Deltares, Delft, Netherlands
[6] Univ Alcala, Dept Geol Geog & Environm, Environm Remote Sensing Res Grp, Alcala De Henares, Spain
[7] Univ Calif Irvine, Geospatial Data Solut Ctr, Irvine, CA USA
[8] Max Planck Inst Chem, Dept Atmospher Chem, Mainz, Germany
[9] Chinese Acad Sci, Inst Atmospher Phys, Int Ctr Climate & Environm Sci, Beijing, Peoples R China
[10] Environm Canada, Climate Res Div, Victoria, BC, Canada
[11] Univ Exeter, Coll Life & Environm Sci, Exeter, Devon, England
[12] Lab Sci Climat & Environm, Gif Sur Yvette, France
[13] Karlsruhe Inst Technol, Inst Meteorol & Climate Res, Atmospher Environm Res, Garmisch Partenkirchen, Germany
基金
欧洲研究理事会;
关键词
TERRESTRIAL CARBON BALANCE; FUEL MOISTURE-CONTENT; EARTH SYSTEM; INTERCOMPARISON PROJECT; INCORPORATING SPITFIRE; SPATIALLY EXPLICIT; FOREST-FIRE; CLIMATE; BOREAL; EMISSIONS;
D O I
10.5194/bg-16-57-2019
中图分类号
Q14 [生态学(生物生态学)];
学科分类号
071012 ; 0713 ;
摘要
Recent climate changes have increased fire-prone weather conditions in many regions and have likely affected fire occurrence, which might impact ecosystem functioning, biogeochemical cycles, and society. Prediction of how fire impacts may change in the future is difficult because of the complexity of the controls on fire occurrence and burned area. Here we aim to assess how process-based firee-nabled dynamic global vegetation models (DGVMs) represent relationships between controlling factors and burned area. We developed a pattern-oriented model evaluation approach using the random forest (RF) algorithm to identify emergent relationships between climate, vegetation, and socio-economic predictor variables and burned area. We applied this approach to monthly burned area time series for the period from 2005 to 2011 from satellite observations and from DGVMs from the "Fire Modeling Intercomparison Project" (FireMIP) that were run using a common protocol and forcing data sets. The satellite-derived relationships indicate strong sensitivity to climate variables (e.g. maximum temperature, number of wet days), vegetation properties (e.g. vegetation type, previous-season plant productivity and leaf area, woody litter), and to socio-economic variables (e.g. human population density). DGVMs broadly reproduce the relationships with climate variables and, for some models, with population density. Interestingly, satellite-derived responses show a strong increase in burned area with an increase in previous-season leaf area index and plant productivity in most fire-prone ecosystems, which was largely underestimated by most DGVMs. Hence, our pattern-oriented model evaluation approach allowed us to diagnose that veg-etation effects on fire are a main deficiency regarding fireenabled dynamic global vegetation models' ability to accurately simulate the role of fire under global environmental change.
引用
收藏
页码:57 / 76
页数:20
相关论文
共 108 条
[21]  
Breiman L., 2018, RANDOMFOREST BREIMAN
[22]   Global covariation of carbon turnover times with climate in terrestrial ecosystems [J].
Carvalhais, Nuno ;
Forkel, Matthias ;
Khomik, Myroslava ;
Bellarby, Jessica ;
Jung, Martin ;
Migliavacca, Mirco ;
Mu, Mingquan ;
Saatchi, Sassan ;
Santoro, Maurizio ;
Thurner, Martin ;
Weber, Ulrich ;
Ahrens, Bernhard ;
Beer, Christian ;
Cescatti, Alessandro ;
Randerson, James T. ;
Reichstein, Markus .
NATURE, 2014, 514 (7521) :213-+
[23]   Integrating geospatial information into fire risk assessment [J].
Chuvieco, E. ;
Aguado, I. ;
Jurdao, S. ;
Pettinari, M. L. ;
Yebra, M. ;
Salas, J. ;
Hantson, S. ;
de la Riva, J. ;
Ibarra, P. ;
Rodrigues, M. ;
Echeverria, M. ;
Azqueta, D. ;
Roman, M. V. ;
Bastarrika, A. ;
Martinez, S. ;
Recondo, C. ;
Zapico, E. ;
Martinez-Vega, F. J. .
INTERNATIONAL JOURNAL OF WILDLAND FIRE, 2014, 23 (05) :606-619
[24]   Generation and analysis of a new global burned area product based on MODIS 250 m reflectance bands and thermal anomalies [J].
Chuvieco, Emilio ;
Lizundia-Loiola, Joshua ;
Lucrecia Pettinari, Maria ;
Ramo, Ruben ;
Padilla, Marc ;
Tansey, Kevin ;
Mouillot, Florent ;
Laurent, Pierre ;
Storm, Thomas ;
Heil, Angelika ;
Plummer, Stephen .
EARTH SYSTEM SCIENCE DATA, 2018, 10 (04) :2015-2031
[25]   A new global burned area product for climate assessment of fire impacts [J].
Chuvieco, Emilio ;
Yue, Chao ;
Heil, Angelika ;
Mouillot, Florent ;
Alonso-Canas, Itziar ;
Padilla, Marc ;
Pereira, Jose Miguel ;
Oom, Duarte ;
Tansey, Kevin .
GLOBAL ECOLOGY AND BIOGEOGRAPHY, 2016, 25 (05) :619-629
[26]   Relations Between Human Factors and Global Fire Activity [J].
Chuvieco, Emilio ;
Justice, Chris .
ADVANCES IN EARTH OBSERVATION OF GLOBAL CHANGE, 2010, :187-199
[27]  
Cutler A, 2012, ENSEMBLE MACHINE LEARNING: METHODS AND APPLICATIONS, P157, DOI 10.1007/978-1-4419-9326-7_5
[28]  
Elvidge C.D., 2012, Social Geography, V7, P23, DOI [10.5194/sg-7-23-2012, DOI 10.5194/SG-7-23-2012]
[29]   A data-driven approach to identify controls on global fire activity from satellite and climate observations (SOFIA V1) [J].
Forkel, Matthias ;
Dorigo, Wouter ;
Lasslop, Gitta ;
Teubner, Irene ;
Chuvieco, Emilio ;
Thonicke, Kirsten .
GEOSCIENTIFIC MODEL DEVELOPMENT, 2017, 10 (12) :4443-4476
[30]   Greedy function approximation: A gradient boosting machine [J].
Friedman, JH .
ANNALS OF STATISTICS, 2001, 29 (05) :1189-1232