On an approximate minimax circle closest to a set of points

被引:3
作者
Gass, SI [1 ]
Witzgall, C
机构
[1] Univ Maryland, Robert H Smith Sch Business, College Pk, MD 20742 USA
[2] Natl Inst Stand & Technol, Gaithersburg, MD 20899 USA
关键词
facility location; quality control; linear programming;
D O I
10.1016/S0305-0548(03)00015-7
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
We show how the Chebychev minimax criterion for finding a circle closest to a set of points can be approximated well by standard linear programming procedures.
引用
收藏
页码:637 / 643
页数:7
相关论文
共 7 条
[1]  
*AM SOC MECH ENG, 1972, B89311972 ANSI AM SO
[2]  
Anthony G.T., 1993, 15304 EUR EN NAT PHY
[3]  
CHOU SY, 1994, CHARACTERIZING CIRCU
[4]   On the circle closest to a set of points [J].
Drezner, Z ;
Steiner, S ;
Wesolowsky, GO .
COMPUTERS & OPERATIONS RESEARCH, 2002, 29 (06) :637-650
[5]   Fitting circles and spheres to coordinate measuring machine data [J].
Gass, SI ;
Witzgall, C ;
Harary, HH .
INTERNATIONAL JOURNAL OF FLEXIBLE MANUFACTURING SYSTEMS, 1998, 10 (01) :5-25
[6]  
GASS SI, 2002, EUROPEAN J OPERATION, V144, P459
[7]  
SCRAGE L, 1999, OPTIMIZATION MODELIN