Riesz distributions and Laplace transform in the Dunkl setting of type A

被引:6
|
作者
Roesler, Margit [1 ]
机构
[1] Univ Paderborn, Inst Math, Warburger Str 100, D-33098 Paderborn, Germany
关键词
Dunkl theory; Riesz distributions; Laplace transform; Multivariate hypergeometric functions; HYPERGEOMETRIC-FUNCTIONS; OPERATORS; POLYNOMIALS;
D O I
10.1016/j.jfa.2020.108506
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study Riesz distributions in the framework of rational Dunkl theory associated with root systems of type A. As an important tool, we employ a Laplace transform involving the associated Dunkl kernel, which essentially goes back to Macdonald [18], but was so far only established at a formal level. We give a rigorous treatment of this transform based on suitable estimates of the type A Dunkl kernel. Our main result is a precise analogue in the Dunkl setting of a wellknown result by Gindikin, stating that a Riesz distribution on a symmetric cone is a positive measure if and only if its exponent is contained in the Wallach set. For Riesz distributions in the Dunkl setting, we obtain an analogous characterization in terms of a generalized Wallach set which depends on the multiplicity parameter on the root system. (C) 2020 Elsevier Inc. All rights reserved.
引用
收藏
页数:29
相关论文
共 50 条
  • [21] Characterizations of the dispersive order of distributions by the Laplace transform
    Bartoszewicz, J
    STATISTICS & PROBABILITY LETTERS, 1998, 40 (01) : 23 - 29
  • [22] WEAK BOUNDEDNESS OF OPERATOR-VALUED BOCHNER-RIESZ MEANS FOR THE DUNKL TRANSFORM
    Wang, Maofa
    Xu, Bang
    Hu, Jian
    BANACH JOURNAL OF MATHEMATICAL ANALYSIS, 2018, 12 (04): : 1064 - 1083
  • [23] Existence of Extremals of Dunkl-Type Sobolev Inequality and of Stein–Weiss Inequality for Dunkl Riesz Potential
    Saswata Adhikari
    V. P. Anoop
    Sanjay Parui
    Complex Analysis and Operator Theory, 2021, 15
  • [24] Riesz-Laplace Wavelet Transform and PCNN Based Image Fusion
    Sun S.
    Tang Y.
    Mei Z.
    Yang M.
    Tang T.
    Wu Y.
    Machine Graphics and Vision, 2023, 32 (01): : 73 - 84
  • [25] Paley type inequality on the Hardy type space in the Dunkl setting
    Soltani, Fethi
    ARCHIV DER MATHEMATIK, 2010, 95 (01) : 35 - 44
  • [26] THE DUNKL TRANSFORM
    DEJEU, MFE
    INVENTIONES MATHEMATICAE, 1993, 113 (01) : 147 - 162
  • [27] Dunkl transform of (β, γ)-Dunkl Lipschitz functions
    Daher, Radouan
    Boujeddaine, Mustapha
    El Hamma, Mohamed
    PROCEEDINGS OF THE JAPAN ACADEMY SERIES A-MATHEMATICAL SCIENCES, 2014, 90 (09) : 135 - 137
  • [28] Paley type inequality on the Hardy type space in the Dunkl setting
    Fethi Soltani
    Archiv der Mathematik, 2010, 95 : 35 - 44
  • [29] Existence of Extremals of Dunkl-Type Sobolev Inequality and of Stein-Weiss Inequality for Dunkl Riesz Potential
    Adhikari, Saswata
    Anoop, V. P.
    Parui, Sanjay
    COMPLEX ANALYSIS AND OPERATOR THEORY, 2021, 15 (02)
  • [30] The Jacobi-Dunkl transform on ℝ and the convolution product on new spaces of distributions
    Hassen Ben Mohamed
    The Ramanujan Journal, 2010, 21 : 145 - 171