Electrochemical Performance of a Layered-Spinel Integrated Li[Ni1/3Mn2/3]O2 as a High Capacity Cathode Material for Li-Ion Batteries

被引:49
作者
Nayak, Prasant Kumar [1 ]
Grinblat, Judith [1 ]
Levi, Mikhael D. [1 ]
Haik, Ortal [1 ]
Levi, Elena [1 ]
Talianker, Michael [2 ]
Markovsky, Boris [1 ]
Sun, Yang-Kook [3 ]
Aurbach, Doron [1 ]
机构
[1] Bar Ilan Univ, Dept Chem, IL-5290002 Ramat Gan, Israel
[2] Ben Gurion Univ Negev, Dept Mat Engn, IL-8410501 Beer Sheva, Israel
[3] Hanyang Univ, Dept Energy Engn, Seoul 133791, South Korea
基金
以色列科学基金会;
关键词
POSITIVE ELECTRODE MATERIAL; JAHN-TELLER DISTORTION; HIGH-VOLTAGE; LIMN1.5NI0.5O4; SPINEL; PHASE-TRANSFORMATION; LITHIUM BATTERIES; LIMO2; M; BEHAVIOR; MN; NI;
D O I
10.1021/acs.chemmater.5b00405
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Li[Ni1/3Mn2/3]O-2 was synthesized by a self-combustion reaction (SCR), characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and Raman spectroscopy, and studied as a cathode material for Li-ion batteries at 30 degrees C and 45 degrees C. The structural studies by XRD and TEM confirmed monoclinic Li[Li1/3Mn2/3]O-2 phase as the major component, and rhombohedral (LiNiO2), spinel (LiNi0.5Mn1.5O4), and rock salt Li0.2Mn0.2Ni0.5O as minor components. The content of the spinel phase increases upon cycling due to the layered-to-spinel phase transition occurring at high potentials. A high discharge capacity of about 220 mAh g1 is obtained at low rate (C/10) with good capacity retention upon cycling. However, LiNi0.5Mn1.5O4 synthesized by SCR exhibits a discharge capacity of about 190 mAh g(-1) in the potential range of 2.44.9 V, which decreases to a value of 150 mAh g(-1) after 100 cycles. Because of the presence of the spinel component, Li[Ni1/3Mn2/3]O-2 cathode material exhibits part of its capacity at potentials around 4.7 V. Thus, it can be considered as an interesting high-capacity and high-voltage cathode material for high-energy-density Li-ion batteries. Also, the Li[Ni1/3Mn2/3]O-2 electrodes exhibit better electrochemical stability than spinel LiNi0.5Mn1.5O4 electrodes when cycled at 45 degrees C.
引用
收藏
页码:2600 / 2611
页数:12
相关论文
共 52 条
  • [1] Integrated Materials xLi2MnO3•(1-x) LiMn1/3Ni1/3Co1/3O2 (x=0.3, 0.5, 0.7) Synthesized
    Amalraj, Francis
    Kovacheva, Daniela
    Talianker, Michael
    Zeiri, Leila
    Grinblat, Judith
    Leifer, Nicole
    Goobes, Gil
    Markovsky, Boris
    Aurbach, Doron
    [J]. JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2010, 157 (10) : A1121 - A1130
  • [2] Study of the nanosized Li2MnO3: Electrochemical behavior, structure, magnetic properties, and vibrational modes
    Amalraj, S. Francis
    Sharon, Daniel
    Talianker, Michael
    Julien, Christian M.
    Burlaka, Luba
    Lavi, Ronit
    Zhecheva, Ekaterina
    Markovsky, Boris
    Zinigrad, Ella
    Kovacheva, Daniela
    Stoyanova, Radostina
    Aurbach, Doron
    [J]. ELECTROCHIMICA ACTA, 2013, 97 : 259 - 270
  • [3] Study of the electrochemical behavior of the "inactive" Li2MnO3
    Amalraj, S. Francis
    Markovsky, Boris
    Sharon, Daniel
    Talianker, Michael
    Zinigrad, Ella
    Persky, Rachel
    Haik, Ortal
    Grinblat, Judith
    Lampert, Jordan
    Schulz-Dobrick, Martin
    Garsuch, Arnd
    Burlaka, Luba
    Aurbach, Doron
    [J]. ELECTROCHIMICA ACTA, 2012, 78 : 32 - 39
  • [4] Building better batteries
    Armand, M.
    Tarascon, J. -M.
    [J]. NATURE, 2008, 451 (7179) : 652 - 657
  • [5] Demonstrating oxygen loss and associated structural reorganization in the lithium battery cathode Li[Ni0.2Li0.2Mn0.6]O2
    Armstrong, A. Robert
    Holzapfel, Michael
    Novak, Petr
    Johnson, Christopher S.
    Kang, Sun-Ho
    Thackeray, Michael M.
    Bruce, Peter G.
    [J]. JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2006, 128 (26) : 8694 - 8698
  • [6] Onset mechanism of Jahn-Teller distortion in 4 v LiMn2O4 and its suppression by LiM0.05Mn1.95O4 (M = Co, Ni) coating
    Chung, KY
    Ryu, CW
    Kim, KB
    [J]. JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2005, 152 (04) : A791 - A795
  • [7] Challenges in the development of advanced Li-ion batteries: a review
    Etacheri, Vinodkumar
    Marom, Rotem
    Elazari, Ran
    Salitra, Gregory
    Aurbach, Doron
    [J]. ENERGY & ENVIRONMENTAL SCIENCE, 2011, 4 (09) : 3243 - 3262
  • [8] Microwave rapid preparation of LiNi0.5Mn1.5O4 and the improved high rate performance for lithium-ion batteries
    Gao, Po
    Wang, Lu
    Chen, Lin
    Jiang, Xuefan
    Pinto, Joao
    Yang, Gang
    [J]. ELECTROCHIMICA ACTA, 2013, 100 : 125 - 132
  • [9] The Li-Ion Rechargeable Battery: A Perspective
    Goodenough, John B.
    Park, Kyu-Sung
    [J]. JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2013, 135 (04) : 1167 - 1176
  • [10] Formation of the Spinel Phase in the Layered Composite Cathode Used in Li-Ion Batteries
    Gu, Meng
    Belharouak, Ilias
    Zheng, Jianming
    Wu, Huiming
    Xiao, Jie
    Genc, Arda
    Amine, Khalil
    Thevuthasan, Suntharampillai
    Baer, Donald R.
    Zhang, Ji-Guang
    Browning, Nigel D.
    Liu, Jun
    Wang, Chongmin
    [J]. ACS NANO, 2013, 7 (01) : 760 - 767