A Whole-Slide Image Managing Library Based on Fastai for Deep Learning in the Context of Histopathology: Two Use-Cases Explained

被引:5
作者
Neuner, Christoph [1 ]
Coras, Roland [1 ]
Bluemcke, Ingmar [1 ]
Popp, Alexander [1 ]
Schlaffer, Sven M. [2 ]
Wirries, Andre [3 ]
Buchfelder, Michael [2 ]
Jabari, Samir [1 ]
机构
[1] Univ Hosp Erlangen, Inst Neuropathol, D-91054 Erlangen, Germany
[2] Univ Hosp Erlangen, Dept Neurosurg, D-91054 Erlangen, Germany
[3] Hessing Fdn, Spine Ctr, Hessingstr 17, D-86199 Augsburg, Germany
来源
APPLIED SCIENCES-BASEL | 2022年 / 12卷 / 01期
关键词
brain; pituitary adenoma; dysembryoplastic neuroepithelial tumor; DNET; ganglioglioma; deep learning; digital pathology; convolutional neural network; computer vision; machine learning; CNN; CLASSIFICATION; PATHOLOGY;
D O I
10.3390/app12010013
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Background: Processing whole-slide images (WSI) to train neural networks can be intricate and labor intensive. We developed an open-source library dealing with recurrent tasks in the processing of WSI and helping with the training and evaluation of neuronal networks for classification tasks. Methods: Two histopathology use-cases were selected and only hematoxylin and eosin (H&E) stained slides were used. The first use case was a two-class classification problem. We trained a convolutional neuronal network (CNN) to distinguish between dysembryoplastic neuroepithelial tumor (DNET) and ganglioglioma (GG), two neuropathological low-grade epilepsy-associated tumor entities. Within the second use case, we included four clinicopathological disease conditions in a multilabel approach. Here we trained a CNN to predict the hormone expression profile of pituitary adenomas. In the same approach, we also predicted clinically silent corticotroph adenoma. Results: Our DNET-GG classifier achieved an AUC of 1.00 for the ROC curve. For the second use case, the best performing CNN achieved an area under the curve (AUC) of 0.97 for the receiver operating characteristic (ROC) for corticotroph adenoma, 0.86 for silent corticotroph adenoma, and 0.98 for gonadotroph adenoma. All scores were calculated with the help of our library on predictions on a case basis. Conclusions: Our comprehensive and fastai-compatible library is helpful to standardize the workflow and minimize the burden of training a CNN. Indeed, our trained CNNs extracted neuropathologically relevant information from the WSI. This approach will supplement the clinicopathological diagnosis of brain tumors, which is currently based on cost-intensive microscopic examination and variable panels of immunohistochemical stainings.
引用
收藏
页数:21
相关论文
共 45 条
[1]   Epidemiology and etiopathogenesis of pituitary adenomas [J].
Aflorei, Elena D. ;
Korbonits, Marta .
JOURNAL OF NEURO-ONCOLOGY, 2014, 117 (03) :379-394
[2]   A High-Performance System for Robust Stain Normalization of Whole-Slide Images in Histopathology [J].
Anghel, Andreea ;
Stanisavljevic, Milos ;
Andani, Sonali ;
Papandreou, Nikolaos ;
Rueschoff, Jan Hendrick ;
Wild, Peter ;
Gabrani, Maria ;
Pozidis, Haralampos .
FRONTIERS IN MEDICINE, 2019, 6
[3]  
[Anonymous], 2014, COMPUT RES REPOSITOR
[4]  
[Anonymous], 2015, arXiv preprint arXiv:1501.02876
[5]  
[Anonymous], 2018, Mixed precision training
[6]   Automated Gleason grading of prostate cancer tissue microarrays via deep learning [J].
Arvaniti, Eirini ;
Fricker, Kim S. ;
Moret, Michael ;
Rupp, Niels ;
Hermanns, Thomas ;
Fankhauser, Christian ;
Wey, Norbert ;
Wild, Peter J. ;
Ruschoff, Jan H. ;
Claassen, Manfred .
SCIENTIFIC REPORTS, 2018, 8
[7]   QuPath: Open source software for digital pathology image analysis [J].
Bankhead, Peter ;
Loughrey, Maurice B. ;
Fernandez, Jose A. ;
Dombrowski, Yvonne ;
Mcart, Darragh G. ;
Dunne, Philip D. ;
McQuaid, Stephen ;
Gray, Ronan T. ;
Murray, Liam J. ;
Coleman, Helen G. ;
James, Jacqueline A. ;
Salto-Tellez, Manuel ;
Hamilton, Peter W. .
SCIENTIFIC REPORTS, 2017, 7
[8]   Diagnostic Assessment of Deep Learning Algorithms for Detection of Lymph Node Metastases in Women With Breast Cancer [J].
Bejnordi, Babak Ehteshami ;
Veta, Mitko ;
van Diest, Paul Johannes ;
van Ginneken, Bram ;
Karssemeijer, Nico ;
Litjens, Geert ;
van der Laak, Jeroen A. W. M. .
JAMA-JOURNAL OF THE AMERICAN MEDICAL ASSOCIATION, 2017, 318 (22) :2199-2210
[9]   Review: Challenges in the histopathological classification of ganglioglioma and DNT: microscopic agreement studies and a preliminary genotype-phenotype analysis [J].
Bluemcke, I. ;
Coras, R. ;
Wefers, A. K. ;
Capper, D. ;
Aronica, E. ;
Becker, A. ;
Honavar, M. ;
Stone, T. J. ;
Jacques, T. S. ;
Miyata, H. ;
Muehlebner, A. ;
Pimentel, J. ;
Soeylemezoglu, F. ;
Thom, M. .
NEUROPATHOLOGY AND APPLIED NEUROBIOLOGY, 2019, 45 (02) :95-107
[10]  
Cadene R., 2019, PRETRAINED PYTORCH M