OsASR6 Enhances Salt Stress Tolerance in Rice

被引:34
|
作者
Zhang, Qin [1 ]
Liu, Yuqing [1 ]
Jiang, Yingli [1 ]
Li, Aiqi [1 ]
Cheng, Beijiu [1 ]
Wu, Jiandong [1 ]
机构
[1] Anhui Agr Univ, Sch Life Sci, Natl Engn Lab Crop Stress Resistance Breeding, Hefei 230036, Peoples R China
关键词
salt tolerance; Oryza sativa; OsASR6; OsNCED1; abscisic acid; ACID BIOSYNTHESIS; GENE; PROTEIN; ASR1; ABA; EXPRESSION; SATIVA; MAIZE; SUGAR;
D O I
10.3390/ijms23169340
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
High salinity seriously affects crop growth and yield. Abscisic acid-, stress-, and ripening-induced (ASR) proteins play an important role in plant responses to multiple abiotic stresses. In this study, we identified a new salt-induced ASR gene in rice (OsASR6) and functionally characterized its role in mediating salt tolerance. Transcript levels of OsASR6 were upregulated under salinity stress, H2O2 and abscisic acid (ABA) treatments. Nuclear and cytoplasmic localization of the OsASR6 protein were confirmed. Meanwhile, a transactivation activity assay in yeast demonstrated no self-activation ability. Furthermore, transgenic rice plants overexpressing OsASR6 showed enhanced salt and oxidative stress tolerance as a result of reductions in H2O2, malondialdehyde (MDA), Na/K and relative electrolyte leakage. In contrast, OsASR6 RNAi transgenic lines showed opposite results. A higher ABA content was also measured in the OsASR6 overexpressing lines compared with the control. Moreover, OsNCED1, a key enzyme of ABA biosynthesis, was found to interact with OsASR6. Collectively, these results suggest that OsASR6 serves primarily as a functional protein, enhancing tolerance to salt stress, representing a candidate gene for genetic manipulation of new salinity-resistant lines in rice.
引用
收藏
页数:13
相关论文
共 50 条
  • [21] Overexpression of OsDUF6 increases salt stress tolerance in rice
    Ma, Guangming
    Zhang, Yong
    Li, Xiangyang
    BMC PLANT BIOLOGY, 2024, 24 (01)
  • [22] OsMPK4 promotes phosphorylation and degradation of IPA1 in response to salt stress to confer salt tolerance in rice
    Jia, Meiru
    Luo, Nan
    Meng, Xiangbing
    Song, Xiaoguang
    Jing, Yanhui
    Kou, Liquan
    Liu, Guifu
    Huang, Xiahe
    Wang, Yingchun
    Li, Jiayang
    Wang, Bing
    Yu, Hong
    JOURNAL OF GENETICS AND GENOMICS, 2022, 49 (08) : 766 - 775
  • [23] Overexpression of BrCIPK1 Gene Enhances Abiotic Stress Tolerance by Increasing Proline Biosynthesis in Rice
    Abdula, Sailila E.
    Lee, Hye-Jung
    Ryu, Hojin
    Kang, Kwon Kyoo
    Nou, Illsup
    Sorrells, Mark E.
    Cho, Yong-Gu
    PLANT MOLECULAR BIOLOGY REPORTER, 2016, 34 (02) : 501 - 511
  • [24] Overexpression of a NAC transcription factor enhances rice drought and salt tolerance
    Zheng, Xingnan
    Chen, Bo
    Lu, Guojun
    Han, Bin
    BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS, 2009, 379 (04) : 985 - 989
  • [25] Knockout of OsBURP12 enhances salt tolerance in rice seedlings
    Luo, Zengtong
    Yu, Sijia
    Chen, Jialing
    Liu, Qianyi
    Hu, Mangu
    Yang, Xiao
    Huang, Yongxiang
    Xiao, Wuming
    ENVIRONMENTAL AND EXPERIMENTAL BOTANY, 2025, 231
  • [26] Overexpression of RCc3 improves root system architecture and enhances salt tolerance in rice
    Li, Xingxing
    Chen, Rongrong
    Chu, Yanli
    Huang, Junyang
    Jin, Liang
    Wang, Guixue
    Huang, Junli
    PLANT PHYSIOLOGY AND BIOCHEMISTRY, 2018, 130 : 566 - 576
  • [27] The role of the OsCam1-1 salt stress sensor in ABA accumulation and salt tolerance in rice
    Saeng-ngam, Sukhumaporn
    Takpirom, Warintra
    Buaboocha, Teerapong
    Chadchawan, Supachitra
    JOURNAL OF PLANT BIOLOGY, 2012, 55 (03) : 198 - 208
  • [28] Exogenous 6-BA enhances salt tolerance of Limonium bicolor by increasing the number of salt glands
    Liu, Jing
    Meng, Fanxia
    Jiang, Aijuan
    Hou, Xueting
    Liu, Qing
    Fan, Hai
    Chen, Min
    PLANT CELL REPORTS, 2024, 43 (01)
  • [29] Soybean Salt Tolerance 1 (GmST1) Reduces ROS Production, Enhances ABA Sensitivity, and Abiotic Stress Tolerance in Arabidopsis thaliana
    Ren, Shuxin
    Lyle, Chimera
    Jiang, Guo-liang
    Penumala, Abhishek
    FRONTIERS IN PLANT SCIENCE, 2016, 7
  • [30] Overexpressing a Putative Aquaporin Gene from Wheat, TaNIP, Enhances Salt Tolerance in Transgenic Arabidopsis
    Gao, Zhenxian
    He, Xiaoliang
    Zhao, Baocun
    Zhou, Chunjiang
    Liang, Yingzhu
    Ge, Rongchao
    Shen, Yinzhu
    Huang, Zhanjing
    PLANT AND CELL PHYSIOLOGY, 2010, 51 (05) : 767 - 775