Multiobjective optimization for dynamic environments

被引:0
作者
Bui, LT [1 ]
Branke, J [1 ]
Abbass, HA [1 ]
机构
[1] Univ New S Wales, Sch ITEE, Artificial Life & Adapt Robot Lab, ADFA,ARC Ctr Complex Syst, Canberra, ACT 2600, Australia
来源
2005 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION, VOLS 1-3, PROCEEDINGS | 2005年
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper investigates the use of evolutionary multi-objective optimization methods (EMOs) for solving single-objective optimization problems in dynamic environments. A number of authors proposed the use of EMOs for maintaining diversity in a single objective optimization task, where they transform the single objective optimization problem into a multi-objective optimization problem by adding an artificial objective function. We extend this work by looking at the dynamic single objective task and examine a number of different possibilities for the artificial objective function. We adopt the Non-dominated Sorting Genetic Algorithm version 2 (NSGA2). The results show that the resultant formulations are promising and competitive to other methods for handling dynamic environments.
引用
收藏
页码:2349 / 2356
页数:8
相关论文
共 50 条
[21]   MULTIOBJECTIVE OPTIMIZATION OF THE QUALITY OF PROCESSES IN THE DYNAMIC SYSTEM [J].
PAVLOV, VV ;
KAZAKOV, VV ;
VORONIN, AN ;
KERBER, OB ;
MAIOROV, VA .
AVTOMATIKA, 1989, (02) :51-56
[22]   Clonal selection algorithm for dynamic multiobjective optimization [J].
Shang, RH ;
Jiao, LC ;
Gong, MG ;
Lu, B .
COMPUTATIONAL INTELLIGENCE AND SECURITY, PT 1, PROCEEDINGS, 2005, 3801 :846-851
[23]   Dynamic Normalization in MOEA/D for Multiobjective Optimization [J].
He, Linjun ;
Ishibuchi, Hisao ;
Trivedit, Anupam ;
Srinivasant, Dipti .
2020 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION (CEC), 2020,
[24]   Novel Prediction Strategies for Dynamic Multiobjective Optimization [J].
Zhang, Qingyang ;
Yang, Shengxiang ;
Jiang, Shouyong ;
Wang, Ronggui ;
Li, Xiaoli .
IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, 2020, 24 (02) :260-274
[25]   Multiobjective optimization using dynamic neighborhood Particle Swarm Optimization [J].
Hu, XH ;
Eberhart, R .
CEC'02: PROCEEDINGS OF THE 2002 CONGRESS ON EVOLUTIONARY COMPUTATION, VOLS 1 AND 2, 2002, :1677-1681
[26]   Data-Based Multiobjective Plant-Wide Performance Optimization of Industrial Processes Under Dynamic Environments [J].
Ding, Jinliang ;
Modares, Hamidreza ;
Chai, Tianyou ;
Lewis, Frank L. .
IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, 2016, 12 (02) :454-465
[27]   Collaborative optimization in dynamic environments [J].
Lung, Rodica Ioana ;
Dumitrescu, Dan .
INTERNATIONAL JOURNAL OF COMPUTERS COMMUNICATIONS & CONTROL, 2006, 1 :295-300
[28]   DYNAMIC OPTIMIZATION IN FLUCTUATING ENVIRONMENTS [J].
MCNAMARA, JM ;
WEBB, JN ;
COLLINS, EJ .
PROCEEDINGS OF THE ROYAL SOCIETY B-BIOLOGICAL SCIENCES, 1995, 261 (1362) :279-284
[29]   Dynamic Landscape Analysis for Constrained Multiobjective Optimization Problems [J].
Alsouly, Hanan ;
Kirley, Michael ;
Munoz, Mario Andres .
ADVANCES IN ARTIFICIAL INTELLIGENCE, AI 2023, PT I, 2024, 14471 :429-441
[30]   Dynamic multiobjective optimization driven by inverse reinforcement learning [J].
Zou, Fei ;
Yen, Gary G. ;
Zhao, Chen .
INFORMATION SCIENCES, 2021, 575 :468-484