Well-posedness and asymptotic stability results for a viscoelastic plate equation with a logarithmic nonlinearity

被引:24
作者
Al-Gharabli, Mohammad M. [1 ]
Guesmia, Aissa [2 ]
Messaoudi, Salim A. [3 ]
机构
[1] King Fahd Univ Petr & Minerals, Dept Math, Preparatory Year Program, Dhahran, Saudi Arabia
[2] Univ Lorraine, Inst Elie Cartan Lorraine, UMR 7502, Metz, France
[3] King Fahd Univ Petr & Minerals, Dept Math & Stat, Dhahran, Saudi Arabia
关键词
Asymptotic stability; viscoelastic; plate equation; logarithmic nonlinearity; GLOBAL EXISTENCE; GENERAL DECAY; WAVE-EQUATION; BLOW-UP; NONEXISTENCE; ENERGY; RATES;
D O I
10.1080/00036811.2018.1484910
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we consider a viscoelastic plate equation with a velocity-dependent material density and a logarithmic nonlinearity. Using the Faedo-Galaerkin approximations and the multiplier method, we establish the existence of the solutions of the problem and we prove an explicit and general decay rate result. These results extend and improve many results in the literature.
引用
收藏
页码:50 / 74
页数:25
相关论文
共 39 条
[1]  
[Anonymous], 1980, Annales de la faculte de sciences de Toulouse, 5e serie, DOI DOI 10.5802/AFST.543
[2]  
[Anonymous], 1989, International Series of Numerical Mathematics
[3]  
[Anonymous], 2008, ELECTRON J DIFFER EQ
[4]   INFLATIONARY MODELS WITH LOGARITHMIC POTENTIALS [J].
BARROW, JD ;
PARSONS, P .
PHYSICAL REVIEW D, 1995, 52 (10) :5576-5587
[5]   One-dimensional Klein-Gordon equation with logarithmic nonlinearities [J].
Bartkowski, Konrad ;
Gorka, Przemyslaw .
JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2008, 41 (35)
[6]  
BIALYNICKIBIRULA I, 1975, B ACAD POL SCI SMAP, V23, P461
[7]   NONLINEAR-WAVE MECHANICS [J].
BIALYNICKIBIRULA, I ;
MYCIELSKI, J .
ANNALS OF PHYSICS, 1976, 100 (1-2) :62-93
[8]   Intrinsic decay rates for the energy of a nonlinear viscoelastic equation modeling the vibrations of thin rods with variable density [J].
Cavalcanti, Marcelo M. ;
Domingos Cavalcanti, Valeria N. ;
Lasiecka, Irena ;
Webler, Claudete M. .
ADVANCES IN NONLINEAR ANALYSIS, 2017, 6 (02) :121-145
[9]   Frictional versus viscoelastic damping in a semilinear wave equation [J].
Cavalcanti, MM ;
Oquendo, HP .
SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2003, 42 (04) :1310-1324
[10]   Existence and uniform decay for a non-linear viscoelastic equation with strong damping [J].
Cavalcanti, MM ;
Cavalcanti, VND ;
Ferreira, J .
MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2001, 24 (14) :1043-1053