Persistent Long-Term Synaptic Plasticity Requires Activation of a New Signaling Pathway by Additional Stimuli
被引:26
作者:
Hu, Jiang-Yuan
论文数: 0引用数: 0
h-index: 0
机构:
Columbia Univ Coll Phys & Surg, New York State Psychiat Inst, Dept Neurosci, New York, NY 10032 USAColumbia Univ Coll Phys & Surg, New York State Psychiat Inst, Dept Neurosci, New York, NY 10032 USA
Hu, Jiang-Yuan
[1
]
Baussi, Orit
论文数: 0引用数: 0
h-index: 0
机构:
Columbia Univ Coll Phys & Surg, New York State Psychiat Inst, Dept Neurosci, New York, NY 10032 USAColumbia Univ Coll Phys & Surg, New York State Psychiat Inst, Dept Neurosci, New York, NY 10032 USA
Baussi, Orit
[1
]
Levine, Amir
论文数: 0引用数: 0
h-index: 0
机构:
Columbia Univ Coll Phys & Surg, New York State Psychiat Inst, Dept Neurosci, New York, NY 10032 USAColumbia Univ Coll Phys & Surg, New York State Psychiat Inst, Dept Neurosci, New York, NY 10032 USA
Levine, Amir
[1
]
Chen, Yang
论文数: 0引用数: 0
h-index: 0
机构:
Columbia Univ Coll Phys & Surg, New York State Psychiat Inst, Dept Neurosci, New York, NY 10032 USAColumbia Univ Coll Phys & Surg, New York State Psychiat Inst, Dept Neurosci, New York, NY 10032 USA
Chen, Yang
[1
]
Schacher, Samuel
论文数: 0引用数: 0
h-index: 0
机构:
Columbia Univ Coll Phys & Surg, New York State Psychiat Inst, Dept Neurosci, New York, NY 10032 USAColumbia Univ Coll Phys & Surg, New York State Psychiat Inst, Dept Neurosci, New York, NY 10032 USA
Schacher, Samuel
[1
]
机构:
[1] Columbia Univ Coll Phys & Surg, New York State Psychiat Inst, Dept Neurosci, New York, NY 10032 USA
Most memories are strengthened by additional stimuli, but it is unclear how additional stimulation or training reinforces long-term memory. To address this we examined whether long-term facilitation (LTF) of Aplysia sensorimotor synapses in cell culture-a cellular correlate of long-term sensitization of defensive withdrawal reflexes in Aplysia californica-can be prolonged by additional stimulation. We found that 1 d treatment with serotonin (5-HT; five brief applications at 20 min intervals) produced LTF lasting similar to 3 d, whereas 2 d of such 5-HT treatments induced a persistent LTF lasting >7 d. Incubation with the protein synthesis inhibitor rapamycin during the second set of 5-HT treatments abolished all facilitation, and synapse strength returned prematurely to baseline. Persistent LTF required more persistent elevation in the expression of the neurotrophin-like peptide sensorin and its secretion. Activation of protein kinase C (PKC) during the second day of 5-HT treatments, not required for LTF or changes in sensorin expression during the first set of 5-HT treatments, is critical for persistent LTF and replaces phosphoinositide 3 kinase (PI3K) activity in mediating the increase in sensorin expression. In contrast, activations of PKC during the first day of 5-HT treatments and PI3K during the second day of 5-HT treatments are unnecessary for persistent LTF or the increases in sensorin expression. Thus, additional stimuli make preexisting plasticity labile as they recruit a new signaling cascade to regulate the synthesis of a neurotrophin-like peptide required for persistent alterations in synaptic efficacy.