A new class of generalized Apostol-Bernoulli polynomials and some analogues of the Srivastava-Pinter addition theorem

被引:27
作者
Tremblay, R. [1 ]
Gaboury, S. [2 ]
Fugere, B. -J. [2 ]
机构
[1] Univ Quebec, Dept Math & Informat, Chicoutimi, PQ G7H 2B1, Canada
[2] Royal Mil Coll Canada, Dept Math & Comp Sci, Kingston, ON K7K 5LO, Canada
关键词
Generalized Bernoulli polynomials; Generalized Euler polynomials; Generalized Apostol-Bernoulli polynomials; Generalized Apostol-Euler polynomials; Stirling numbers of the second kind; Generating functions; HURWITZ ZETA-FUNCTION; EULER POLYNOMIALS; HIGHER-ORDER; FORMULAS;
D O I
10.1016/j.aml.2011.05.012
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The main purpose of this paper is to introduce and investigate a new class of generalized Apostol-Bernoulli polynomials based on a definition given by Natalini and Bernardini (2003) [22] for the generalized Bernoulli polynomials. We obtain a generalization of the Srivastava-Pinter addition theorem (Srivastava and Pinter (2004) [23]). We also give a list of expressions involving special functions that could be used to obtain some analogues of the Srivastava-Pinter addition theorem. Finally, we give an analogue featuring the new class of generalized Apostol-Bernoulli polynomials. (C) 2011 Elsevier Ltd. All rights reserved.
引用
收藏
页码:1888 / 1893
页数:6
相关论文
共 24 条
[1]  
Abramowitz M., 1964, HDB MATH FUNCTIONS F
[2]  
[Anonymous], 1953, HIGH TRANSCEND UNPUB
[3]  
[Anonymous], 1975, TABLE SERIES PRODUCT
[4]  
[Anonymous], 2008, ADV APPL DISCRETE MA
[5]  
[Anonymous], 2010, APPL MATH SCI-BULG
[6]  
[Anonymous], 2003, J APPL MATH
[7]  
APOSTOL TM, 1951, B AM MATH SOC, V57, P370
[8]   Some q-extensions of the Apostol-Bernoulli and the Apostol-Euler polynomials of order n, and the multiple Hurwitz zeta function [J].
Choi, Junesang ;
Anderson, P. J. ;
Srivastava, H. M. .
APPLIED MATHEMATICS AND COMPUTATION, 2008, 199 (02) :723-737
[9]  
Comtet L., 1974, ADV COMBINATORICS AR
[10]   Some relationships between the generalized Apostol-Bernoulli polynomials and Hurwitz-Lerch Zeta functions [J].
Garg, Mridula ;
Jain, Kumkum ;
Srivastava, H. M. .
INTEGRAL TRANSFORMS AND SPECIAL FUNCTIONS, 2006, 17 (11) :803-815