Machine Learning Self-Diffusion Prediction for Lennard-Jones Fluids in Pores

被引:21
作者
Leverant, Calen J. [1 ,2 ]
Harvey, Jacob A. [3 ]
Alam, Todd M. [4 ]
Greathouse, Jeffery A. [3 ]
机构
[1] Sandia Natl Labs, WMD Threats & Aerosol Sci Dept, Albuquerque, NM 87185 USA
[2] Univ Florida, Dept Chem Engn, Gainesville, FL 32611 USA
[3] Sandia Natl Labs, Geochem Dept, Albuquerque, NM 87185 USA
[4] Sandia Natl Labs, Organ Mat Sci Dept, Albuquerque, NM 87185 USA
关键词
NONELECTROLYTE ORGANIC-COMPOUNDS; REDOX FLOW BATTERY; TRANSPORT-COEFFICIENTS; MOLECULAR-DYNAMICS; PURE COMPOUNDS; MODEL; COEXISTENCE; SIMULATION; MECHANISM; SYSTEMS;
D O I
10.1021/acs.jpcc.1c08297
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Predicting the diffusion coefficient of fluids under nanoconfinement is important for many applications including the extraction of shale gas from kerogen and product turnover in porous catalysts. Due to the large number of important variables, including pore shape and size, fluid temperature and density, and the fluid-wall interaction strength, simulating diffusion coefficients using molecular dynamics (MD) in a systematic study could prove to be prohibitively expensive. Here, we use machine learning models trained on a subset of MD data to predict the self-diffusion coefficients of Lennard-Jones fluids in pores. Our MD data set contains 2280 simulations of ideal slit pore, cylindrical pore, and hexagonal pore geometries. We use the forward feature selection method to determine the most useful features (i.e., descriptors) for developing an artificial neutral network (ANN) model with an emphasis on easily acquired features. Our model shows good predictive ability with a coefficient of determination (i.e., R2) of -,0.99 and a mean squared error of -,2.9 x 10-5. Finally, we propose an alteration to our feature set that will allow the ANN model to be applied to nonideal pore geometries.
引用
收藏
页码:25898 / 25906
页数:9
相关论文
共 57 条
  • [31] Impact of Nanoporosity on Hydrocarbon Transport in Shales' Organic Matter
    Obliger, Amael
    Ulm, Franz-Josef
    Pellenq, Roland
    [J]. NANO LETTERS, 2018, 18 (02) : 832 - 837
  • [32] Unraveling the Diffusion Properties of Zeolite-Based Multicomponent Catalyst by Combined Gravimetric Analysis and IR Spectroscopy (AGIR)
    Peng, Peng
    Stosic, Dusan
    Aitblal, Abdelhafid
    Vimont, Alexandre
    Bazin, Philippe
    Liu, Xin-Mei
    Yan, Zi-Feng
    Mintova, Svetlana
    Travert, Arnaud
    [J]. ACS CATALYSIS, 2020, 10 (12) : 6822 - 6830
  • [33] Accelerating materials property predictions using machine learning
    Pilania, Ghanshyam
    Wang, Chenchen
    Jiang, Xun
    Rajasekaran, Sanguthevar
    Ramprasad, Ramamurthy
    [J]. SCIENTIFIC REPORTS, 2013, 3
  • [34] FAST PARALLEL ALGORITHMS FOR SHORT-RANGE MOLECULAR-DYNAMICS
    PLIMPTON, S
    [J]. JOURNAL OF COMPUTATIONAL PHYSICS, 1995, 117 (01) : 1 - 19
  • [35] Nanofluidics: Systems and applications
    Prakash, Shaurya
    Piruska, Aigars
    Gatimu, Enid N.
    Bohn, Paul W.
    Sweedler, Jonathan V.
    Shannon, Mark A.
    [J]. IEEE SENSORS JOURNAL, 2008, 8 (5-6) : 441 - 450
  • [36] Atomistic simulation of KCl transport in charged silicon nanochannels: Interfacial effects
    Qiao, R
    Aluru, NR
    [J]. COLLOIDS AND SURFACES A-PHYSICOCHEMICAL AND ENGINEERING ASPECTS, 2005, 267 (1-3) : 103 - 109
  • [37] Machine learning at the energy and intensity frontiers of particle physics
    Radovic, Alexander
    Williams, Mike
    Rousseau, David
    Kagan, Michael
    Bonacorsi, Daniele
    Himmel, Alexander
    Aurisano, Adam
    Terao, Kazuhiro
    Wongjirad, Taritree
    [J]. NATURE, 2018, 560 (7716) : 41 - 48
  • [38] Modeling Nanoconfinement Effects Using Active Learning
    Santos, Javier E.
    Mehana, Mohammed
    Wu, Hao
    Prodanovic, Masa
    Kang, Qinjun
    Lubbers, Nicholas
    Viswanathan, Hari
    Pyrcz, Michael J.
    [J]. JOURNAL OF PHYSICAL CHEMISTRY C, 2020, 124 (40) : 22200 - 22211
  • [39] Self-Stabilizing Transpiration in Synthetic Leaves
    Shi, Weiwei
    Vieitez, Joshua R.
    Berrier, Austin S.
    Roseveare, Matthew W.
    Surinach, Daniel A.
    Srijanto, Bernadeta R.
    Collier, C. Patrick
    Boreyko, Jonathan B.
    [J]. ACS APPLIED MATERIALS & INTERFACES, 2019, 11 (14) : 13768 - 13776
  • [40] Diffusion under Confinement: Hydrodynamic Finite-Size Effects in Simulation
    Simonnin, Pauline
    Noetinger, Benoit
    Nieto-Draghi, Carlos
    Marry, Virginie
    Rotenberg, Benjamin
    [J]. JOURNAL OF CHEMICAL THEORY AND COMPUTATION, 2017, 13 (06) : 2881 - 2889