Transition from near-field thermal radiation to phonon heat conduction at sub-nanometre gaps

被引:104
作者
Chiloyan, Vazrik [1 ]
Garg, Jivtesh [2 ]
Esfarjani, Keivan [3 ,4 ]
Chen, Gang [1 ]
机构
[1] MIT, Dept Mech Engn, Cambridge, MA 02139 USA
[2] Univ Oklahoma, Sch Aerosp & Mech Engn, Norman, OK 73019 USA
[3] Rutgers State Univ, Dept Mech Engn, Piscataway, NJ 08854 USA
[4] Rutgers State Univ, IAMDN, Piscataway, NJ 08854 USA
来源
NATURE COMMUNICATIONS | 2015年 / 6卷
关键词
OPTICAL-PROPERTIES; SURFACE; PLASMONICS; QUANTUM; FORCE;
D O I
10.1038/ncomms7755
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
When the separation of two surfaces approaches sub-nanometre scale, the boundary between the two most fundamental heat transfer modes, heat conduction by phonons and radiation by photons, is blurred. Here we develop an atomistic framework based on microscopic Maxwell's equations and lattice dynamics to describe the convergence of these heat transfer modes and the transition from one to the other. For gaps 41 nm, the predicted conductance values are in excellent agreement with the continuum theory of fluctuating electrodynamics. However, for sub-nanometre gaps we find the conductance is enhanced up to four times compared with the continuum approach, while avoiding its prediction of divergent conductance at contact. Furthermore, low-frequency acoustic phonons tunnel through the vacuum gap by coupling to evanescent electric fields, providing additional channels for energy transfer and leading to the observed enhancement. When the two surfaces are in or near contact, acoustic phonons become dominant heat carriers.
引用
收藏
页数:7
相关论文
共 49 条
[1]   Vacuum Phonon Tunneling [J].
Altfeder, Igor ;
Voevodin, Andrey A. ;
Roy, Ajit K. .
PHYSICAL REVIEW LETTERS, 2010, 105 (16)
[2]  
[Anonymous], 1998, Classical Electrodynamics
[3]   Mesoscopic Description of Radiative Heat Transfer at the Nanoscale [J].
Biehs, S-A ;
Rousseau, E. ;
Greffet, J-J .
PHYSICAL REVIEW LETTERS, 2010, 105 (23)
[4]   Nanoscale thermal transport. II. 2003-2012 [J].
Cahill, David G. ;
Braun, Paul V. ;
Chen, Gang ;
Clarke, David R. ;
Fan, Shanhui ;
Goodson, Kenneth E. ;
Keblinski, Pawel ;
King, William P. ;
Mahan, Gerald D. ;
Majumdar, Arun ;
Maris, Humphrey J. ;
Phillpot, Simon R. ;
Pop, Eric ;
Shi, Li .
APPLIED PHYSICS REVIEWS, 2014, 1 (01)
[5]   Nanoscale thermal transport [J].
Cahill, DG ;
Ford, WK ;
Goodson, KE ;
Mahan, GD ;
Majumdar, A ;
Maris, HJ ;
Merlin, R ;
Phillpot, SR .
JOURNAL OF APPLIED PHYSICS, 2003, 93 (02) :793-818
[6]   Size-dependent infrared properties of MgO nanoparticles with evidence of screening effect [J].
Chalopin, Yann ;
Dammak, Hichem ;
Hayoun, Marc ;
Besbes, Mondher ;
Greffet, Jean-Jacques .
APPLIED PHYSICS LETTERS, 2012, 100 (24)
[7]   Effects of spatial dispersion in near-field radiative heat transfer between two parallel metallic surfaces [J].
Chapuis, Pierre-Olivier ;
Volz, Sebastian ;
Henkel, Carsten ;
Joulain, Karl ;
Greffet, Jean-Jacques .
PHYSICAL REVIEW B, 2008, 77 (03)
[8]   Heat transport in harmonic lattices [J].
Dhar, Abhishek ;
Roy, Dibyendu .
JOURNAL OF STATISTICAL PHYSICS, 2006, 125 (04) :805-824
[9]   Heat transfer between two nanoparticles through near field interaction [J].
Domingues, G ;
Volz, S ;
Joulain, K ;
Greffet, JJ .
PHYSICAL REVIEW LETTERS, 2005, 94 (08)
[10]   Correction to the Casimir force due to the anomalous skin effect [J].
Esquivel, R ;
Svetovoy, VB .
PHYSICAL REVIEW A, 2004, 69 (06) :062102-1