Predicting cumulative incidence probability by direct binomial regression

被引:148
作者
Scheike, Thomas H. [1 ]
Zhang, Mei-Jie [2 ]
Gerds, Thomas A. [3 ]
机构
[1] Univ Copenhagen, Dept Biostat, DK-1014 Copenhagen, Denmark
[2] Med Coll Wisconsin, Div Biostat, Milwaukee, WI 53226 USA
[3] Univ Freiburg, Inst Med Biometry & Med Informat, D-79104 Freiburg, Germany
关键词
binomial modelling; cause-specific hazard; cumulative incidence probability; subdistribution hazard;
D O I
10.1093/biomet/asm096
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
We suggest a new simple approach for estimation and assessment of covariate effects for the cumulative incidence curve in the competing risks model. We consider a semiparametric regression model where some effects may be time-varying and some may be constant over time. Our estimator can be implemented by standard software. Our simulation study shows that the estimator works well and has finite-sample properties comparable with the subdistribution approach. We apply the method to bone marrow transplant data and estimate the cumulative incidence of death in complete remission following a bone marrow transplantation. Here death in complete remission and relapse are two competing events.
引用
收藏
页码:205 / 220
页数:16
相关论文
共 24 条
[1]  
Andersen P. K., 2012, Statistical models based on counting processes
[2]   Generalised linear models for correlated pseudo-observations, with applications to multi-state models [J].
Andersen, PK ;
Klein, JP ;
Rosthoj, S .
BIOMETRIKA, 2003, 90 (01) :15-27
[3]   Estimating medical costs with censored data [J].
Bang, H ;
Tsiatis, AA .
BIOMETRIKA, 2000, 87 (02) :329-343
[4]  
Bickel Peter J, 1993, Efficient and adaptive estimation for semiparametric models, V4
[5]   Prediction of cumulative incidence function under the proportional hazards model [J].
Cheng, SC ;
Fine, JP ;
Wei, LJ .
BIOMETRICS, 1998, 54 (01) :219-228
[6]   Analysing competing risks data with transformation models [J].
Fine, JP .
JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 1999, 61 :817-830
[7]   Temporal process regression [J].
Fine, JP ;
Yan, J ;
Kosorok, MR .
BIOMETRIKA, 2004, 91 (03) :683-703
[8]   A proportional hazards model for the subdistribution of a competing risk [J].
Fine, JP ;
Gray, RJ .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1999, 94 (446) :496-509
[9]   A CLASS OF K-SAMPLE TESTS FOR COMPARING THE CUMULATIVE INCIDENCE OF A COMPETING RISK [J].
GRAY, RJ .
ANNALS OF STATISTICS, 1988, 16 (03) :1141-1154
[10]   Regression modeling of competing risks data based on pseudovalues of the cumulative incidence function [J].
Klein, JP ;
Andersen, PK .
BIOMETRICS, 2005, 61 (01) :223-229