Robot Motion Governing Using Upper Limb EMG Signal Based on Empirical Mode Decomposition

被引:0
|
作者
Liu, Hsiu-Jen [1 ]
Young, Kuu-young [1 ]
机构
[1] Natl Chiao Tung Univ, Dept Elect Engn, Hsinchu, Taiwan
来源
2010 IEEE INTERNATIONAL CONFERENCE ON SYSTEMS, MAN AND CYBERNETICS (SMC 2010) | 2010年
关键词
Electromyography (EMG); Robot control; Upper limb motion classification; Empirical mode decomposition;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper presents a simple and effective approach to govern robot arm motion in real time using upper limb EMG signals. Considering the non-stationary and nonlinear characteristics of the EMG signals, in the design for feature extraction, we introduce the empirical mode decomposition (EMD) to decompose the EMG signals into intrinsic mode functions (IMFs). Each IMF represents different physical characteristic, so that the muscular movement can be recognized. We then integrate it with a so-called initial point detection method previously proposed to establish the mapping between the upper limb EMG signals and corresponding robot arm movements in real time. In addition, for each individual user, we adopt a fuzzy approach to select proper system parameters for motion classification. The experimental results show the feasibility of the proposed approach with accurate motion recognition.
引用
收藏
页数:6
相关论文
共 50 条
  • [31] Psychological stress detection using phonocardiography signal: An empirical mode decomposition approach
    Cheema, Amandeep
    Singh, Mandeep
    BIOMEDICAL SIGNAL PROCESSING AND CONTROL, 2019, 49 : 493 - 505
  • [32] Cancellation of Unwanted Doppler Radar Sensor Motion Using Empirical Mode Decomposition
    Mostafanezhad, Isar
    Yavari, Ehsan
    Boric-Lubecke, Olga
    Lubecke, Victor M.
    Mandic, Danilo P.
    IEEE SENSORS JOURNAL, 2013, 13 (05) : 1897 - 1904
  • [33] EEG Signal Classification Using Empirical Mode Decomposition and Support Vector Machine
    Bajaj, Varun
    Pachori, Ram Bilas
    PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON SOFT COMPUTING FOR PROBLEM SOLVING (SOCPROS 2011), VOL 2, 2012, 131 : 623 - 635
  • [34] Weak Signal Sensing using Empirical Mode Decomposition and Stochastic Data Reordering
    Roy, Arnab
    Doherty, John F.
    2011 - MILCOM 2011 MILITARY COMMUNICATIONS CONFERENCE, 2011, : 37 - 41
  • [35] A weighted bio-signal denoising approach using empirical mode decomposition
    Lahmiri S.
    Boukadoum M.
    Biomedical Engineering Letters, 2015, 5 (02) : 131 - 139
  • [36] Ensemble Median Empirical Mode Decomposition for Emotion Recognition Using EEG Signal
    Samal, Priyadarsini
    Hashmi, Mohammad Farukh
    IEEE SENSORS LETTERS, 2023, 7 (05)
  • [37] Differential absorption LIDAR signal denoising using empirical mode decomposition technique
    M. K. Jindal
    Mainuddin Mainuddin
    S. Veerabuthiran
    M. Ashraf
    N. Jindal
    Optical and Quantum Electronics, 2023, 55
  • [38] Differential absorption LIDAR signal denoising using empirical mode decomposition technique
    Jindal, M. K.
    Mainuddin, Mainuddin
    Veerabuthiran, S.
    Ashraf, M.
    Jindal, N.
    OPTICAL AND QUANTUM ELECTRONICS, 2023, 55 (11)
  • [39] Pulsar signal denoising method based on empirical mode decomposition mode cell proportion shrinking
    Wang Wen-Bo
    Zhang Xiao-Dong
    Wang Xiang-Li
    ACTA PHYSICA SINICA, 2013, 62 (06)
  • [40] Denoising of ECG Signal Based on Empirical Mode Decomposition and Adaptive Noise Cancellation
    Yang, Rendi
    Zhang, Yanli
    ADVANCES IN SCIENCE AND ENGINEERING, PTS 1 AND 2, 2011, 40-41 : 140 - +