Robot Motion Governing Using Upper Limb EMG Signal Based on Empirical Mode Decomposition

被引:0
|
作者
Liu, Hsiu-Jen [1 ]
Young, Kuu-young [1 ]
机构
[1] Natl Chiao Tung Univ, Dept Elect Engn, Hsinchu, Taiwan
来源
2010 IEEE INTERNATIONAL CONFERENCE ON SYSTEMS, MAN AND CYBERNETICS (SMC 2010) | 2010年
关键词
Electromyography (EMG); Robot control; Upper limb motion classification; Empirical mode decomposition;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper presents a simple and effective approach to govern robot arm motion in real time using upper limb EMG signals. Considering the non-stationary and nonlinear characteristics of the EMG signals, in the design for feature extraction, we introduce the empirical mode decomposition (EMD) to decompose the EMG signals into intrinsic mode functions (IMFs). Each IMF represents different physical characteristic, so that the muscular movement can be recognized. We then integrate it with a so-called initial point detection method previously proposed to establish the mapping between the upper limb EMG signals and corresponding robot arm movements in real time. In addition, for each individual user, we adopt a fuzzy approach to select proper system parameters for motion classification. The experimental results show the feasibility of the proposed approach with accurate motion recognition.
引用
收藏
页数:6
相关论文
共 50 条
  • [1] Upper-Limb EMG-Based Robot Motion Governing Using Empirical Mode Decomposition and Adaptive Neural Fuzzy Inference System
    Liu, Hsiu-Jen
    Young, Kuu-Young
    JOURNAL OF INTELLIGENT & ROBOTIC SYSTEMS, 2012, 68 (3-4) : 275 - 291
  • [2] Upper-Limb EMG-Based Robot Motion Governing Using Empirical Mode Decomposition and Adaptive Neural Fuzzy Inference System
    Hsiu-Jen Liu
    Kuu-Young Young
    Journal of Intelligent & Robotic Systems, 2012, 68 : 275 - 291
  • [3] EMG signal filtering based on Empirical Mode Decomposition
    Andrade, Adriano O.
    Nasuto, Slawomir
    Kyberd, Peter
    Sweeney-Reed, Catherine M.
    Van Kanijn, F. R.
    BIOMEDICAL SIGNAL PROCESSING AND CONTROL, 2006, 1 (01) : 44 - 55
  • [4] Threshold Parameters Selection for Empirical Mode Decomposition-Based EMG Signal Denoising
    Ashraf, Hassan
    Waris, Asim
    Gilani, Syed Omer
    Tariq, Muhammad Umair
    Alquhayz, Hani
    INTELLIGENT AUTOMATION AND SOFT COMPUTING, 2021, 27 (03) : 799 - 815
  • [5] Spectral analysis of surface EMG based on empirical mode decomposition
    Yang, Zheng
    Wu, Qi
    Fu, Shan
    OPTIK, 2014, 125 (23): : 7045 - 7052
  • [6] Signal denoising based on empirical mode decomposition
    Klionskiy, Dmitry
    Kupriyanov, Mikhail
    Kaplun, Dmitry
    JOURNAL OF VIBROENGINEERING, 2017, 19 (07) : 5560 - 5570
  • [7] Analysis of ALS and normal EMG signals based on empirical mode decomposition
    Mishra, Vipin K.
    Bajaj, Varun
    Kumar, Anil
    Singh, Girish Kumar
    IET SCIENCE MEASUREMENT & TECHNOLOGY, 2016, 10 (08) : 963 - 971
  • [8] Transient signal detection using the empirical mode decomposition
    Larsen, ML
    Ridgway, J
    Waldman, CH
    Gabbay, M
    Buntzen, RR
    Battista, B
    ADVANCED SIGNAL PROCESSING ALGORITHMS, ARCHITECTURES, AND IMPLEMENTATIONS XIV, 2004, 5559 : 156 - 171
  • [9] EMG Signal Filtering Based on Independent Component Analysis and Empirical Mode Decomposition for Estimation of Motor Activation Patterns
    Tapia, Claudio
    Daud, Omar
    Ruiz-del-Solar, Javier
    JOURNAL OF MEDICAL AND BIOLOGICAL ENGINEERING, 2017, 37 (01) : 140 - 155
  • [10] Feature Layer Fusion of Linear Features and Empirical Mode Decomposition of Human EMG Signal
    Wang J.-Y.
    Dai Y.-H.
    Si X.-X.
    Journal of Electronic Science and Technology, 2022, 20 (03) : 257 - 269