A Comparison of Techniques for Virtual Concept Drift Detection

被引:2
作者
Gonzalez, Manuel L. [1 ]
Sedano, Javier [1 ]
Garcia-Vico, Angel M. [2 ]
Villar, Jose R. [3 ]
机构
[1] Inst Tecnol Castilla & Leon, Burgos, Spain
[2] Univ Granada, Andalusian Res Inst Data Sci & Computat Intellige, Granada, Spain
[3] Univ Oviedo, Oviedo, Spain
来源
16TH INTERNATIONAL CONFERENCE ON SOFT COMPUTING MODELS IN INDUSTRIAL AND ENVIRONMENTAL APPLICATIONS (SOCO 2021) | 2022年 / 1401卷
关键词
Data stream mining; Concept Drift detection; Pre-processing methods;
D O I
10.1007/978-3-030-87869-6_1
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Concept Drift is one of the main problems presents in data stream processing for Data Mining and Machine Learning. This study focuses on Virtual Concept Drift. A common approach includes i) the detection of the drift with a specialized algorithm, and ii) the adaptation of the model to the current scenario. This work studies how well-known pre-processing methods affect abrupt Virtual Concept Drift detection in data streams. The proposed pre-processing techniques are: i) deleting the trend and ii) transforming the data stream from time to spectral domain. Moreover, three Virtual Concept Drift detection methods are compared over three publicly available data sets. According to the results, a slight improvement in the detection of Virtual Concept Drift is achieved when the trend is deleted. In contrast, no detection of Virtual Concept Drift is reported on the spectral domain.
引用
收藏
页码:3 / 13
页数:11
相关论文
共 21 条
  • [1] Baena-Garcia M, 2006, 4 INT WORKSH KNOWL D, V6, P77, DOI DOI 10.1007/978-3-642-23857-4_12
  • [2] Baier L., 2020, P 15 INT C WIRTSCH
  • [3] Bhattacharya A., 1943, BULL CALCUTTA MATH S, V35, P99
  • [4] Bifet A, 2007, PROCEEDINGS OF THE SEVENTH SIAM INTERNATIONAL CONFERENCE ON DATA MINING, P443
  • [5] FINITE FOURIER TRANSFORM
    COOLEY, JW
    LEWIS, PAW
    WELCH, PD
    [J]. IEEE TRANSACTIONS ON AUDIO AND ELECTROACOUSTICS, 1969, AU17 (02): : 77 - &
  • [6] MULTIPLE COMPARISONS AMONG MEANS
    DUNN, OJ
    [J]. JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1961, 56 (293) : 52 - &
  • [7] Gama J, 2004, LECT NOTES ARTIF INT, V3171, P286
  • [8] Gama J, 2006, LECT NOTES ARTIF INT, V4093, P42
  • [9] A Survey on Concept Drift Adaptation
    Gama, Joao
    Zliobaite, Indre
    Bifet, Albert
    Pechenizkiy, Mykola
    Bouchachia, Abdelhamid
    [J]. ACM COMPUTING SURVEYS, 2014, 46 (04)
  • [10] Gao J, 2007, PROCEEDINGS OF THE SEVENTH SIAM INTERNATIONAL CONFERENCE ON DATA MINING, P3