Tagging-via-substrate strategy for probing O-GlcNAc modified proteins

被引:107
作者
Sprung, R
Nandi, A
Chen, Y
Kim, SC
Barma, D
Falck, JR
Zhao, YM
机构
[1] Univ Texas, SW Med Ctr, Dept Biochem, Dallas, TX 75390 USA
[2] Univ Texas, SW Med Ctr, Dept Pharmacol, Dallas, TX 75390 USA
关键词
glycosylation; O-GlcNAc; proteomics; tagging-via-substrate; Staudinger ligation; post-translational modifications;
D O I
10.1021/pr050033j
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Identification of proteins bearing a specific post-translational modification would imply functions of the modification. Proteomic analysis of post-translationally modified proteins is usually challenging due to high complexity and wide dynamic range, as well as unavailability of efficient methods to enrich the proteins of interest. Here, we report a strategy for the detection, isolation, and profiling of O-linked N-acetylglucosamine (O-GIcNAc) modified proteins, which involves three steps: metabolic labeling of cells with an unnatural GlcNAc analogue, peracetylated azido-GlcNAc; chemoselective conjugation of azido-GIcNAc modified proteins via the Staudinger ligation, which is specific between phosphine and azide, using a biotinylated phosphine capture reagent; and detection and affinity purification of the resulting conjugated O-GIcNAc modified proteins. Since the approach relies on a tag (azide) in the substrate, we designated it the tagging-via-substrate (TAS) strategy. A similar strategy was used previously for protein farnesylation, phosphorylation, and sumoylation. Using this approach, we were able to specifically label and subsequently detect azido-GIcNAc modified proteins from the cytosolic lysates of HeLa, 3T3, COS-1, and S2 cell lines, suggesting the azido-substrate could be tolerated by the enzymatic systems among these cells from diverse biological species. We isolated azido-GIcNAc modified proteins from the cytosolic extract of S2 cells and identified 10 previously reported and 41 putative O-GlcNAc modified proteins, by nano-HPLC-MS/MS. Our study demonstrates that the TAS approach is a useful tool for the detection and proteomic analysis of O-GlcNAc modified proteins.
引用
收藏
页码:950 / 957
页数:8
相关论文
共 37 条
[1]  
[Anonymous], 1994, CARBOHYDR
[2]   Enhanced O-GlcNAc protein modification is associated with insulin resistance in GLUT1-overexpressing muscles [J].
Buse, MG ;
Robinson, KA ;
Marshall, BA ;
Hresko, RC ;
Mueckler, MM .
AMERICAN JOURNAL OF PHYSIOLOGY-ENDOCRINOLOGY AND METABOLISM, 2002, 283 (02) :E241-E250
[3]   Characterization of a mouse monoclonal antibody specific for O-linked N-acetylglucosamine [J].
Comer, FI ;
Vosseller, K ;
Wells, L ;
Accavitti, MA ;
Hart, GW .
ANALYTICAL BIOCHEMISTRY, 2001, 293 (02) :169-177
[4]  
DONG DLY, 1994, J BIOL CHEM, V269, P19321
[5]   Quantitative phosphoproteomics applied to the yeast pheromone signaling pathway [J].
Gruhler, A ;
Olsen, JV ;
Mohammed, S ;
Mortensen, P ;
Færgeman, NJ ;
Mann, M ;
Jensen, ON .
MOLECULAR & CELLULAR PROTEOMICS, 2005, 4 (03) :310-327
[6]  
HALTIWANGER RS, 1992, J BIOL CHEM, V267, P9005
[7]   Responsiveness of the state of O-linked N-acetylglucosamine modification of nuclear pore protein p62 to the extracellular glucose concentration [J].
Han, I ;
Oh, ES ;
Kudlow, JE .
BIOCHEMICAL JOURNAL, 2000, 350 :109-114
[8]   Glycan-dependent signaling: O-linked N-acetylglucosamine [J].
Hanover, JA .
FASEB JOURNAL, 2001, 15 (11) :1865-1876
[9]   Role of the glucosamine pathway in fat-induced insulin resistance [J].
Hawkins, M ;
Barzilai, N ;
Liu, R ;
Hu, MZ ;
Chen, W ;
Rossetti, L .
JOURNAL OF CLINICAL INVESTIGATION, 1997, 99 (09) :2173-2182
[10]   TSC2 mediates cellular energy response to control cell growth and survival [J].
Inoki, K ;
Zhu, TQ ;
Guan, KL .
CELL, 2003, 115 (05) :577-590