Non-Gaussian stochastic gravitational waves from phase transitions

被引:22
作者
Kumar, Soubhik [1 ,2 ]
Sundrum, Raman [3 ]
Tsai, Yuhsin [4 ]
机构
[1] Univ Calif Berkeley, Berkeley Ctr Theoret Phys, Dept Phys, 5, Berkeley, CA 94720 USA
[2] Lawrence Berkeley Natl Lab, Theoret Phys Grp, Berkeley, CA 94720 USA
[3] Univ Maryland, Maryland Ctr Fundamental Phys, Dept Phys, College Pk, MD 20742 USA
[4] Univ Notre Dame, Dept Phys, Notre Dame, IN 46556 USA
基金
美国国家科学基金会; 英国科研创新办公室;
关键词
Cosmology of Theories beyond the SM; Beyond Standard Model; RADIATION;
D O I
10.1007/JHEP11(2021)107
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
Cosmological phase transitions in the primordial universe can produce anisotropic stochastic gravitational wave backgrounds (GWB), similar to the cosmic microwave background (CMB). For adiabatic perturbations, the fluctuations in GWB follow those in the CMB, but if primordial fluctuations carry an isocurvature component, this need no longer be true. It is shown that in non-minimal inflationary and reheating settings, primordial isocurvature can survive in GWB and exhibit significant non-Gaussianity (NG) in contrast to the CMB, while obeying current observational bounds. While probing such NG GWB is at best a marginal possibility at LISA, there is much greater scope at future proposed detectors such as DECIGO and BBO. It is even possible that the first observations of inflation-era NG could be made with gravitational wave detectors as opposed to the CMB or Large-Scale Structure surveys.
引用
收藏
页数:21
相关论文
共 93 条
[11]   Anisotropies and non-Gaussianity of the cosmological gravitational wave background [J].
Bartolo, N. ;
Bertacca, D. ;
Matarrese, S. ;
Peloso, M. ;
Ricciardone, A. ;
Riotto, A. ;
Tasinato, G. .
PHYSICAL REVIEW D, 2019, 100 (12)
[12]   Primordial Black Hole Dark Matter: LISA Serendipity [J].
Bartolo, N. ;
De Luca, V. ;
Franciolini, G. ;
Lewis, A. ;
Peloso, M. ;
Riotto, A. .
PHYSICAL REVIEW LETTERS, 2019, 122 (21)
[13]   Testing primordial black holes as dark matter with LISA [J].
Bartolo, N. ;
De Luca, V ;
Franciolini, G. ;
Peloso, M. ;
Racco, D. ;
Riotto, A. .
PHYSICAL REVIEW D, 2019, 99 (10)
[14]   Characterizing the cosmological gravitational wave background: Anisotropies and non-Gaussianity [J].
Bartolo, Nicola ;
Bertacca, Daniele ;
Matarrese, Sabino ;
Peloso, Marco ;
Ricciardone, Angelo ;
Riotto, Antonio ;
Tasinato, Gianmassimo .
PHYSICAL REVIEW D, 2020, 102 (02)
[15]   Measuring the Primordial Gravitational-Wave Background in the Presence of Astrophysical Foregrounds [J].
Biscoveanu, Sylvia ;
Talbot, Colm ;
Thrane, Eric ;
Smith, Rory .
PHYSICAL REVIEW LETTERS, 2020, 125 (24)
[16]   Dark, cold, and noisy: constraining secluded hidden sectors with gravitational waves [J].
Breitbach, Moritz ;
Kopp, Joachim ;
Madge, Eric ;
Opferkuch, Toby ;
Schwaller, Pedro .
JOURNAL OF COSMOLOGY AND ASTROPARTICLE PHYSICS, 2019, (07)
[17]   Detecting gravitational waves from cosmological phase transitions with LISA: an update [J].
Caprini, Chiara ;
Chala, Mikael ;
Dorsch, Glauber C. ;
Hindmarsh, Mark ;
Huber, Stephan J. ;
Konstandin, Thomas ;
Kozaczuk, Jonathan ;
Nardini, Germano ;
No, Jose Miguel ;
Rummukainen, Kari ;
Schwaller, Pedro ;
Servant, Geraldine ;
Tranberg, Anders ;
Weir, David J. .
JOURNAL OF COSMOLOGY AND ASTROPARTICLE PHYSICS, 2020, (03)
[18]   Cosmological backgrounds of gravitational waves [J].
Caprini, Chiara ;
Figueroa, Daniel G. .
CLASSICAL AND QUANTUM GRAVITY, 2018, 35 (16)
[19]   Science with the space-based interferometer eLISA. II: gravitational waves from cosmological phase transitions [J].
Caprini, Chiara ;
Hindmarsh, Mark ;
Huber, Stephan ;
Konstandin, Thomas ;
Kozaczuk, Jonathan ;
Nardini, Germano ;
No, Jose Miguel ;
Petiteau, Antoine ;
Schwaller, Pedro ;
Servant, Geraldine ;
Weir, David J. .
JOURNAL OF COSMOLOGY AND ASTROPARTICLE PHYSICS, 2016, (04)
[20]   Stochastic gravitational wave backgrounds [J].
Christensen, Nelson .
REPORTS ON PROGRESS IN PHYSICS, 2019, 82 (01)