A spectral resolution for digital pseudo-differential operators

被引:0
作者
Vasilyev, Vladimir B. [1 ]
机构
[1] Belgorod State Natl Res Univ, Chair Differential Equat, Pobedy St 85, Belgorod 308015, Russia
关键词
Calderon-Zygmund operator; Digital pseudo-differential operator; Symbol; Multiplier; Spectra; Primary; 42A45; Secondary; 42B20; DISCRETE EQUATIONS; DIFFERENCE; SOLVABILITY;
D O I
10.1007/s41478-019-00193-1
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider a special class of operators acting in discrete spaces and discuss certain its properties related to specters and approximations. These properties can be useful for constructing approximate solutions of corresponding operator equations.
引用
收藏
页码:741 / 751
页数:11
相关论文
共 27 条
[1]  
[Anonymous], 2008, SELECTED PAPERS AP C
[2]  
Bochner S., 1948, PRINCETON MATH SERIE, V10
[3]  
Edwards R.E., 1979, FOURIER SERIES MODER
[4]  
ESKIN G, 1981, TRANSLATIONS MATH MO, V52
[5]   CAN ONE HEAR SHAPE OF A DRUM [J].
KAC, M .
AMERICAN MATHEMATICAL MONTHLY, 1966, 73 (4P2) :1-&
[6]  
Malgrange B, 1960, SEM SCHWARTZ SECR MA, P1
[7]  
Milkhin S. G., 1986, Singular Integral Operators
[8]  
Reed M., Functional Analysis
[9]  
Samko SG., 2001, Hypersingular Integrals and Their Applications, DOI DOI 10.1201/9781482264968
[10]  
Siebert W. M., 1986, CIRCUITS SIGNALS SYS