Fast and reliable approach to calculate energy levels in semiconductor nanostructures

被引:5
作者
Thierry, Francois [1 ]
Le Rouzo, Judikael [1 ]
Flory, Francois [1 ,2 ]
Berginc, Gerard [3 ]
Escoubas, Ludovic [1 ]
机构
[1] Aix Marseille Univ, CNRS, Inst Mat Microelect Nanosci Provenc IM2NP, UMR 7334, F-13397 Marseille, France
[2] Ecole Cent Marseille, F-13451 Marseille, France
[3] THALES Optron SA, F-78990 Elancourt, France
关键词
effective mass approximation; nonparabolicity; nanostructures; CdS; CdSe; PbS; PbSe; coupled quantum wells; PBSE QUANTUM DOTS; EXTINCTION COEFFICIENT; SCHRODINGER-EQUATION; EFFECTIVE-MASS; SIZE DEPENDENCE; SOLAR-CELLS; BAND-GAP; CDSE; NANOCRYSTALS; ELECTRON;
D O I
10.1117/1.JNP.9.093080
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
We propose a method under the effective mass approximation with an original formulation that applies to quantum wells, circular quantum wires, and spherical quantum dots of arbitrary materials with sizes as small as 1 nm. Hundreds of structures are resolved on the second scale on a laptop, allowing for optimization procedures. We demonstrate its capability by confronting bandgap calculations with exhaustive literature data for CdS, CdSe, PbS, and PbSe nanoparticles. Our approach includes a correction of the mass to address the nonparabolicity of the band structure. The correction gives an accuracy comparable to more demanding calculation methods, such as eight-band k center dot p, tight-binding, or even semiempirical pseudopotential methods. The effect of the correction is shown on the intrasubband optical properties of InGaAs/ AlGaAs coupled quantum wells. (C) 2015 Society of Photo-Optical Instrumentation Engineers (SPIE)
引用
收藏
页数:10
相关论文
共 53 条
  • [11] Conceptual density functional theory
    Geerlings, P
    De Proft, F
    Langenaeker, W
    [J]. CHEMICAL REVIEWS, 2003, 103 (05) : 1793 - 1873
  • [12] Tight-binding modelling of materials
    Goringe, CM
    Bowler, DR
    Hernandez, E
    [J]. REPORTS ON PROGRESS IN PHYSICS, 1997, 60 (12) : 1447 - 1512
  • [13] Ligand engineering in hybrid polymer:nanocrystal solar cells
    Greaney, Matthew J.
    Brutchey, Richard L.
    [J]. MATERIALS TODAY, 2015, 18 (01) : 31 - 38
  • [14] Harrison P., 2005, QUANTUM WELLS WIRES
  • [15] Electron Injection from Colloidal PbS Quantum Dots into Titanium Dioxide Nanoparticles
    Hyun, Byung-Ryool
    Zhong, Yu-Wu.
    Bartnik, Adam C.
    Sun, Liangfeng
    Abruna, Hector D.
    Wise, Frank W.
    Goodreau, Jason D.
    Matthews, James R.
    Leslie, Thomas M.
    Borrelli, Nicholas F.
    [J]. ACS NANO, 2008, 2 (11) : 2206 - 2212
  • [16] Determination of Band Structure Parameters and the Quasi-Particle Gap of CdSe Quantum Dots by Cyclic Voltammetry
    Inamdar, Shaukatali N.
    Ingole, Pravin P.
    Haram, Santosh K.
    [J]. CHEMPHYSCHEM, 2008, 9 (17) : 2574 - 2579
  • [17] ELECTRONIC-PROPERTIES OF SEMICONDUCTOR ALLOY SYSTEMS
    JAROS, M
    [J]. REPORTS ON PROGRESS IN PHYSICS, 1985, 48 (08) : 1091 - &
  • [18] Re-examination of the Size-Dependent Absorption Properties of CdSe Quantum Dots
    Jasieniak, Jacek
    Smith, Lisa
    van Embden, Joel
    Mulvaney, Paul
    Califano, Marco
    [J]. JOURNAL OF PHYSICAL CHEMISTRY C, 2009, 113 (45) : 19468 - 19474
  • [19] PbSe nanocrystal/conducting polymer solar cells with an infrared response to 2 micron
    Jiang, Xiaomei
    Schaller, Richard D.
    Lee, Sergey B.
    Pietryga, Jeffrey M.
    Klimov, Victor I.
    Zakhidov, Anvar A.
    [J]. JOURNAL OF MATERIALS RESEARCH, 2007, 22 (08) : 2204 - 2210
  • [20] SOLVING THE SCHRODINGER-EQUATION IN ARBITRARY QUANTUM-WELL POTENTIAL PROFILES USING THE TRANSFER-MATRIX METHOD
    JONSSON, B
    ENG, ST
    [J]. IEEE JOURNAL OF QUANTUM ELECTRONICS, 1990, 26 (11) : 2025 - 2035