An Ant Particle Filter for Visual Tracking

被引:0
作者
Wang, Fasheng [1 ,2 ]
Lin, Baowei [1 ]
Li, Xucheng [2 ]
机构
[1] Dalian Univ Technol, Sch Informat & Commun Engn, Dalian, Peoples R China
[2] Dalian Neusoft Univ Informat, Dept Software Engn, Dalian, Peoples R China
来源
2017 16TH IEEE/ACIS INTERNATIONAL CONFERENCE ON COMPUTER AND INFORMATION SCIENCE (ICIS 2017) | 2017年
基金
中国国家自然科学基金; 中国博士后科学基金;
关键词
MARKOV-CHAIN; ESTIMATOR;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Sequential Monte Carlo method (also named as particle filter) is now a standard framework for solving nonlinear/non-Gaussian problems, especially in computer vision fields. This paper proposes an ant colony optimization (ACO) based iterative particle filter for visual tracking. In the proposed tracking method, the basic idea of ACO is used to simulate the behavior of particle moving toward the posterior density. Such idea is incorporated into the particle filtering framework in order to overcome the well-known problem of particle impoverishment. We design an iterative proposal distribution for particle generation in order to generate better predicted sample states. The experimental results demonstrate that the proposed tracker shows better performance than the other trackers.
引用
收藏
页码:417 / 422
页数:6
相关论文
共 31 条
  • [1] Illumination Invariant Robust Likelihood Estimator for Particle Filtering Based Target Tracking
    Al Delail, Buti
    Bhaskar, Harish
    Zemerly, M. Jamal
    Al-Mualla, Mohammed
    [J]. ADVANCES IN VISUAL COMPUTING, PT II (ISVC 2015), 2015, 9475 : 618 - 627
  • [2] Banani S.A., 2007, ENG TECHNOLOGY, V1, P192
  • [3] Dorigo M., 1997, IEEE Transactions on Evolutionary Computation, V1, P53, DOI 10.1109/4235.585892
  • [4] Iterative particle filter for visual tracking
    Fan, Zhenhua
    Ji, Hongbing
    Zhang, Yongquan
    [J]. SIGNAL PROCESSING-IMAGE COMMUNICATION, 2015, 36 : 140 - 153
  • [5] Fasheng Wang, 2013, Wireless Algorithms, Systems, and Applications. 8th International Conference, WASA 2013. Proceedings. LNCS 7992, P1, DOI 10.1007/978-3-642-39701-1_1
  • [6] Robust Object Tracking via Locality Sensitive Histograms
    He, Shengfeng
    Lau, Rynson W. H.
    Yang, Qingxiong
    Wang, Jiang
    Yang, Ming-Hsuan
    [J]. IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2017, 27 (05) : 1006 - 1017
  • [7] Fast Weighted Histograms for Bilateral Filtering and Nearest Neighbor Searching
    He, Shengfeng
    Yang, Qingxiong
    Lau, Rynson W. H.
    Yang, Ming-Hsuan
    [J]. IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2016, 26 (05) : 891 - 902
  • [8] Visual Tracking via Locality Sensitive Histograms
    He, Shengfeng
    Yang, Qingxiong
    Lau, Rynson W. H.
    Wang, Jiang
    Yang, Ming-Hsuan
    [J]. 2013 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2013, : 2427 - 2434
  • [9] High-Speed Tracking with Kernelized Correlation Filters
    Henriques, Joao F.
    Caseiro, Rui
    Martins, Pedro
    Batista, Jorge
    [J]. IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2015, 37 (03) : 583 - 596
  • [10] Ant Colony Estimator: An intelligent particle filter based on ACOR
    Heris, S. Mostapha Kalami
    Khaloozadeh, Hamid
    [J]. ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2014, 28 : 78 - 85