A PLANE WAVE VIRTUAL ELEMENT METHOD FOR THE HELMHOLTZ PROBLEM

被引:93
作者
Perugia, Ilaria [1 ,2 ]
Pietra, Paola [3 ]
Russo, Alessandro [4 ]
机构
[1] Univ Vienna, Fac Math, A-1090 Vienna, Austria
[2] Univ Pavia, Dept Math, I-27100 Pavia, Italy
[3] CNR, Ist Matemat Appl & Tecnol Informat Enrico Magenes, I-27100 Pavia, Italy
[4] Univ Milano Bicocca, I-20126 Milan, Italy
来源
ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE | 2016年 / 50卷 / 03期
关键词
Helmholtz equation; virtual element method; plane wave basis functions; error analysis; duality estimates; DISCONTINUOUS GALERKIN METHODS; WEAK VARIATIONAL FORMULATION; LINEAR ELASTICITY PROBLEMS; LAGRANGE MULTIPLIERS; POLYGONAL MESHES; EQUATION; TREFFTZ; ACOUSTICS; VERSION; BOUNDS;
D O I
10.1051/m2an/2015066
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We introduce and analyze a virtual element method (VEM) for the Helmholtz problem with approximating spaces made of products of low order VEM functions and plane waves. We restrict ourselves to the 2D Helmholtz equation with impedance boundary conditions on the whole domain boundary. The main ingredients of the plane wave VEM scheme are: (i) a low order VEM space whose basis functions, which are associated to the mesh vertices, are not explicitly computed in the element interiors; (ii) a proper local projection operator onto the plane wave space; (iii) an approximate stabilization term. A convergence result for the h-version of the method is proved, and numerical results testing its performance on general polygonal meshes are presented.
引用
收藏
页码:783 / 808
页数:26
相关论文
共 50 条
  • [41] A virtual element method for the transmission eigenvalue problem
    Mora, David
    Velasquez, Ivan
    [J]. MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2018, 28 (14) : 2803 - 2831
  • [42] The virtual element method for a minimal surface problem
    Antonietti, Paola Francesca
    Bertoluzza, Silvia
    Prada, Daniele
    Verani, Marco
    [J]. CALCOLO, 2020, 57 (04)
  • [43] A virtual element method for the Steklov eigenvalue problem
    Mora, David
    Rivera, Gonzalo
    Rodriguez, Rodolfo
    [J]. MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2015, 25 (08) : 1421 - 1445
  • [44] FINITE ELEMENT METHOD FOR A NONLINEAR PERFECTLY MATCHED LAYER HELMHOLTZ EQUATION WITH HIGH WAVE NUMBER
    Jiang, Run
    Li, Yonglin
    Wu, Haijun
    Zou, Jun
    [J]. SIAM JOURNAL ON NUMERICAL ANALYSIS, 2022, 60 (05) : 2866 - 2896
  • [45] Adaptive BDDC algorithms for the system arising from plane wave discretization of Helmholtz equations
    Peng, Jie
    Wang, Junxian
    Shu, Shi
    [J]. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2018, 116 (10-11) : 683 - 707
  • [46] A Posteriori Error Estimates of Virtual Element Method for a Simplified Friction Problem
    Yanling Deng
    Fei Wang
    Huayi Wei
    [J]. Journal of Scientific Computing, 2020, 83
  • [47] A virtual element method for the Cahn-Hilliard problem in mixed form
    Liu, Xin
    Chen, Zhangxin
    [J]. APPLIED MATHEMATICS LETTERS, 2019, 87 : 115 - 124
  • [48] A posteriori error estimates for a Virtual Element Method for the Steklov eigenvalue problem
    Mora, David
    Rivera, Gonzalo
    Rodriguez, Rodolfo
    [J]. COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2017, 74 (09) : 2172 - 2190
  • [49] Extended virtual element method for the torsion problem of cracked prismatic beams
    Andrea Chiozzi
    Elena Benvenuti
    [J]. Meccanica, 2020, 55 : 637 - 648
  • [50] The Hermite-type virtual element method for second order problem
    Zhao, Jikun
    Zhou, Fengchen
    Zhang, Bei
    Dong, Xiaojing
    [J]. COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2024, 172 : 70 - 77