A PLANE WAVE VIRTUAL ELEMENT METHOD FOR THE HELMHOLTZ PROBLEM

被引:93
作者
Perugia, Ilaria [1 ,2 ]
Pietra, Paola [3 ]
Russo, Alessandro [4 ]
机构
[1] Univ Vienna, Fac Math, A-1090 Vienna, Austria
[2] Univ Pavia, Dept Math, I-27100 Pavia, Italy
[3] CNR, Ist Matemat Appl & Tecnol Informat Enrico Magenes, I-27100 Pavia, Italy
[4] Univ Milano Bicocca, I-20126 Milan, Italy
来源
ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE | 2016年 / 50卷 / 03期
关键词
Helmholtz equation; virtual element method; plane wave basis functions; error analysis; duality estimates; DISCONTINUOUS GALERKIN METHODS; WEAK VARIATIONAL FORMULATION; LINEAR ELASTICITY PROBLEMS; LAGRANGE MULTIPLIERS; POLYGONAL MESHES; EQUATION; TREFFTZ; ACOUSTICS; VERSION; BOUNDS;
D O I
10.1051/m2an/2015066
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We introduce and analyze a virtual element method (VEM) for the Helmholtz problem with approximating spaces made of products of low order VEM functions and plane waves. We restrict ourselves to the 2D Helmholtz equation with impedance boundary conditions on the whole domain boundary. The main ingredients of the plane wave VEM scheme are: (i) a low order VEM space whose basis functions, which are associated to the mesh vertices, are not explicitly computed in the element interiors; (ii) a proper local projection operator onto the plane wave space; (iii) an approximate stabilization term. A convergence result for the h-version of the method is proved, and numerical results testing its performance on general polygonal meshes are presented.
引用
收藏
页码:783 / 808
页数:26
相关论文
共 50 条
  • [21] A new coupling of mixed finite element and boundary element methods for an exterior Helmholtz problem in the plane
    Gabriel N. Gatica
    Antonio Márquez
    Salim Meddahi
    Advances in Computational Mathematics, 2009, 30 : 281 - 301
  • [22] Virtual element methods for the obstacle problem
    Wang, Fei
    Wei, Huayi
    IMA JOURNAL OF NUMERICAL ANALYSIS, 2020, 40 (01) : 708 - 728
  • [23] Optimization of plane wave directions in plane wave discontinuous Galerkin methods for the Helmholtz equation
    Agrawal, Akshay
    Hoppe, Ronald H. W.
    PORTUGALIAE MATHEMATICA, 2017, 74 (01) : 69 - 89
  • [24] An efficient neural network method with plane wave activation functions for solving Helmholtz equation
    Cui, Tao
    Wang, Ziming
    Xiang, Xueshuang
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2022, 111 : 34 - 49
  • [25] A new coupling of mixed finite element and boundary element methods for an exterior Helmholtz problem in the plane
    Gatica, Gabriel N.
    Marquez, Antonio
    Meddahi, Salim
    ADVANCES IN COMPUTATIONAL MATHEMATICS, 2009, 30 (03) : 281 - 301
  • [26] A mixed hybrid finite element method for the Helmholtz equation
    Hannukainen, A.
    Huber, M.
    Schoeberl, J.
    JOURNAL OF MODERN OPTICS, 2011, 58 (5-6) : 424 - 437
  • [27] A comparison of high-order and plane wave enriched boundary element basis functions for Helmholtz problems
    Gilvey, B.
    Trevelyan, J.
    ENGINEERING ANALYSIS WITH BOUNDARY ELEMENTS, 2021, 122 : 190 - 201
  • [28] Stabilization-free serendipity virtual element method for plane elasticity
    Chen, Alvin
    Sukumar, N.
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2023, 404
  • [29] The fully nonconforming virtual element method for biharmonic problems
    Antonietti, P. F.
    Manzini, G.
    Verani, M.
    MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2018, 28 (02) : 387 - 407
  • [30] BDDC and FETI-DP for the virtual element method
    Bertoluzza, Silvia
    Pennacchio, Micol
    Prada, Daniele
    CALCOLO, 2017, 54 (04) : 1565 - 1593