THE SCHUR CONVEXITY FOR THE GENERALIZED MUIRHEAD MEAN

被引:6
作者
Gong, Wei-Ming [1 ]
Sun, Hui [1 ]
Chu, Yu-Ming [1 ]
机构
[1] Hunan City Univ, Sch Math & Computat Sci, Yiyang 413000, Peoples R China
来源
JOURNAL OF MATHEMATICAL INEQUALITIES | 2014年 / 8卷 / 04期
关键词
Generalized Muirhead mean; Schur convexity; Schur concavity; SYMMETRIC FUNCTION;
D O I
10.7153/jmi-08-64
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
For x, y > 0, a, b is an element of R with a+ b not equal 0, the generalized Muirhead mean is defined by M( a, b; x, y) = (x(a)y(b) + x(b)y(a)/2) . In this paper, we prove that M( a, b; x, y) is Schur convex with respect to ( x, y) is an element of ( 0,infinity) x( 0,infinity) if and only if ( a, b) is an element of{( a, b)is an element of R-2 : ( a- b) (2) >= a+ b > 0& ab <= 0} and Schur concave with respect to ( x, y). ( 0,infinity) x( 0,infinity) if and only if ( a, b)is an element of{( a, b)is an element of R-2 + : ( a- b)(2) not equal a+ b & ( a, b) = ( 0,0)}.{( a, b). R2 : a+ b < 0}, where R+ : = [ 0,8)
引用
收藏
页码:855 / 862
页数:8
相关论文
共 26 条
[1]  
[Anonymous], MATHEMATICA
[2]  
[Anonymous], 2007, J MATH INEQUAL, DOI DOI 10.7153/JMI-01-121131.260092347710
[3]  
[Anonymous], METRIKA
[4]   SCHUR-CONVEXITY FOR A-OPTIMAL DESIGNS [J].
CHAN, NN .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1987, 122 (01) :1-6
[5]   Necessary and sufficient conditions such that extended mean values are Schur-convex or Schur-concave [J].
Chu, Yuming ;
Zhang, Xiaoming .
JOURNAL OF MATHEMATICS OF KYOTO UNIVERSITY, 2008, 48 (01) :229-238
[6]   The Schur Harmonic Convexity of the Hamy Symmetric Function and Its Applications [J].
Chu, Yuming ;
Lv, Yupei .
JOURNAL OF INEQUALITIES AND APPLICATIONS, 2009,
[7]   Solution of an open problem for Schur convexity or concavity of the Gini mean values [J].
Chu YuMing ;
Xia WeiFeng .
SCIENCE IN CHINA SERIES A-MATHEMATICS, 2009, 52 (10) :2099-2106
[8]  
Chu YM, 2008, J CONVEX ANAL, V15, P707
[9]   SCHUR CONVEX-FUNCTIONS ON THE SPECTRA OF GRAPHS [J].
CONSTANTINE, GM .
DISCRETE MATHEMATICS, 1983, 45 (2-3) :181-188
[10]   Schur-convexity of the complete elementary symmetric function [J].
Guan, Kaizhong .
JOURNAL OF INEQUALITIES AND APPLICATIONS, 2006, 2006 (1) :1-9