Learning Rotated Inscribed Ellipse for Oriented Object Detection in Remote Sensing Images

被引:10
作者
He, Xu [1 ]
Ma, Shiping [1 ]
He, Linyuan [1 ,2 ]
Ru, Le [1 ]
Wang, Chen [1 ]
机构
[1] Air Force Engn Univ, Aeronaut Engn Coll, Xian 710038, Peoples R China
[2] Northwestern Polytech Univ, Unbanned Syst Res Inst, Xian 710072, Peoples R China
基金
中国博士后科学基金; 中国国家自然科学基金;
关键词
oriented object detection; rotated inscribed ellipse; remote sensing images; keypoint-based detection; gated aggregation; eccentricity-wise;
D O I
10.3390/rs13183622
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Oriented object detection in remote sensing images (RSIs) is a significant yet challenging Earth Vision task, as the objects in RSIs usually emerge with complicated backgrounds, arbitrary orientations, multi-scale distributions, and dramatic aspect ratio variations. Existing oriented object detectors are mostly inherited from the anchor-based paradigm. However, the prominent performance of high-precision and real-time detection with anchor-based detectors is overshadowed by the design limitations of tediously rotated anchors. By using the simplicity and efficiency of keypoint-based detection, in this work, we extend a keypoint-based detector to the task of oriented object detection in RSIs. Specifically, we first simplify the oriented bounding box (OBB) as a center-based rotated inscribed ellipse (RIE), and then employ six parameters to represent the RIE inside each OBB: the center point position of the RIE, the offsets of the long half axis, the length of the short half axis, and an orientation label. In addition, to resolve the influence of complex backgrounds and large-scale variations, a high-resolution gated aggregation network (HRGANet) is designed to identify the targets of interest from complex backgrounds and fuse multi-scale features by using a gated aggregation model (GAM). Furthermore, by analyzing the influence of eccentricity on orientation error, eccentricity-wise orientation loss (ewoLoss) is proposed to assign the penalties on the orientation loss based on the eccentricity of the RIE, which effectively improves the accuracy of the detection of oriented objects with a large aspect ratio. Extensive experimental results on the DOTA and HRSC2016 datasets demonstrate the effectiveness of the proposed method.
引用
收藏
页数:26
相关论文
共 61 条
[1]   Social media and satellites: Disaster event detection, linking and summarization [J].
Ahmad, Kashif ;
Pogorelov, Konstantin ;
Riegler, Michael ;
Conci, Nicola ;
Halvorsen, Pal .
MULTIMEDIA TOOLS AND APPLICATIONS, 2019, 78 (03) :2837-2875
[2]  
[Anonymous], 2015, ACS SYM SER
[3]   Towards Multi-class Object Detection in Unconstrained Remote Sensing Imagery [J].
Azimi, Seyed Majid ;
Vig, Eleonora ;
Bahmanyar, Reza ;
Koerner, Marco ;
Reinartz, Peter .
COMPUTER VISION - ACCV 2018, PT III, 2019, 11363 :150-165
[4]   Finding Arbitrary-Oriented Ships From Remote Sensing Images Using Corner Detection [J].
Chen, Jiajie ;
Xie, Fengying ;
Lu, Yuanyao ;
Jiang, Zhiguo .
IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2020, 17 (10) :1712-1716
[5]   PIoU Loss: Towards Accurate Oriented Object Detection in Complex Environments [J].
Chen, Zhiming ;
Chen, Kean ;
Lin, Weiyao ;
See, John ;
Yu, Hui ;
Ke, Yan ;
Yang, Cong .
COMPUTER VISION - ECCV 2020, PT V, 2020, 12350 :195-211
[6]   Learning Rotation-Invariant and Fisher Discriminative Convolutional Neural Networks for Object Detection [J].
Cheng, Gong ;
Han, Junwei ;
Zhou, Peicheng ;
Xu, Dong .
IEEE TRANSACTIONS ON IMAGE PROCESSING, 2019, 28 (01) :265-278
[7]   Learning Rotation-Invariant Convolutional Neural Networks for Object Detection in VHR Optical Remote Sensing Images [J].
Cheng, Gong ;
Zhou, Peicheng ;
Han, Junwei .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2016, 54 (12) :7405-7415
[8]   Learning RoI Transformer for Oriented Object Detection in Aerial Images [J].
Ding, Jian ;
Xue, Nan ;
Long, Yang ;
Xia, Gui-Song ;
Lu, Qikai .
2019 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2019), 2019, :2844-2853
[9]   CenterNet: Keypoint Triplets for Object Detection [J].
Duan, Kaiwen ;
Bai, Song ;
Xie, Lingxi ;
Qi, Honggang ;
Huang, Qingming ;
Tian, Qi .
2019 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2019), 2019, :6568-6577
[10]  
Girshick R., 2015, P IEEE INT C COMP VI, V(ed), DOI [DOI 10.1109/ICCV.2015.169, 10.1109/ICCV.2015.169]